Enter a problem...
Precalculus Examples
Step 1
Step 1.1
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor is 2nd order, terms are required in the numerator. The number of terms required in the numerator is always equal to the order of the factor in the denominator.
Step 1.3
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.4
Cancel the common factor of .
Step 1.4.1
Cancel the common factor.
Step 1.4.2
Rewrite the expression.
Step 1.5
Cancel the common factor of .
Step 1.5.1
Cancel the common factor.
Step 1.5.2
Rewrite the expression.
Step 1.6
Cancel the common factor of .
Step 1.6.1
Cancel the common factor.
Step 1.6.2
Rewrite the expression.
Step 1.7
Simplify each term.
Step 1.7.1
Cancel the common factor of .
Step 1.7.1.1
Cancel the common factor.
Step 1.7.1.2
Divide by .
Step 1.7.2
Expand using the FOIL Method.
Step 1.7.2.1
Apply the distributive property.
Step 1.7.2.2
Apply the distributive property.
Step 1.7.2.3
Apply the distributive property.
Step 1.7.3
Simplify each term.
Step 1.7.3.1
Rewrite using the commutative property of multiplication.
Step 1.7.3.2
Multiply by by adding the exponents.
Step 1.7.3.2.1
Move .
Step 1.7.3.2.2
Multiply by .
Step 1.7.3.2.2.1
Raise to the power of .
Step 1.7.3.2.2.2
Use the power rule to combine exponents.
Step 1.7.3.2.3
Add and .
Step 1.7.3.3
Multiply by .
Step 1.7.3.4
Multiply by .
Step 1.7.3.5
Multiply by .
Step 1.7.3.6
Multiply by .
Step 1.7.4
Apply the distributive property.
Step 1.7.5
Simplify.
Step 1.7.5.1
Rewrite using the commutative property of multiplication.
Step 1.7.5.2
Rewrite using the commutative property of multiplication.
Step 1.7.5.3
Rewrite using the commutative property of multiplication.
Step 1.7.5.4
Move to the left of .
Step 1.7.6
Cancel the common factor of .
Step 1.7.6.1
Cancel the common factor.
Step 1.7.6.2
Divide by .
Step 1.7.7
Apply the distributive property.
Step 1.7.8
Rewrite using the commutative property of multiplication.
Step 1.7.9
Multiply by .
Step 1.7.10
Multiply by by adding the exponents.
Step 1.7.10.1
Move .
Step 1.7.10.2
Multiply by .
Step 1.7.10.2.1
Raise to the power of .
Step 1.7.10.2.2
Use the power rule to combine exponents.
Step 1.7.10.3
Add and .
Step 1.7.11
Apply the distributive property.
Step 1.7.12
Rewrite using the commutative property of multiplication.
Step 1.7.13
Cancel the common factor of .
Step 1.7.13.1
Cancel the common factor.
Step 1.7.13.2
Divide by .
Step 1.7.14
Apply the distributive property.
Step 1.7.15
Rewrite using the commutative property of multiplication.
Step 1.7.16
Move to the left of .
Step 1.7.17
Multiply by by adding the exponents.
Step 1.7.17.1
Move .
Step 1.7.17.2
Multiply by .
Step 1.7.18
Expand using the FOIL Method.
Step 1.7.18.1
Apply the distributive property.
Step 1.7.18.2
Apply the distributive property.
Step 1.7.18.3
Apply the distributive property.
Step 1.7.19
Simplify each term.
Step 1.7.19.1
Rewrite using the commutative property of multiplication.
Step 1.7.19.2
Multiply by by adding the exponents.
Step 1.7.19.2.1
Move .
Step 1.7.19.2.2
Multiply by .
Step 1.7.19.2.2.1
Raise to the power of .
Step 1.7.19.2.2.2
Use the power rule to combine exponents.
Step 1.7.19.2.3
Add and .
Step 1.7.19.3
Rewrite using the commutative property of multiplication.
Step 1.7.19.4
Multiply by by adding the exponents.
Step 1.7.19.4.1
Move .
Step 1.7.19.4.2
Multiply by .
Step 1.7.19.5
Rewrite using the commutative property of multiplication.
Step 1.7.19.6
Rewrite using the commutative property of multiplication.
Step 1.8
Simplify the expression.
Step 1.8.1
Move .
Step 1.8.2
Move .
Step 1.8.3
Move .
Step 1.8.4
Move .
Step 1.8.5
Reorder and .
Step 1.8.6
Move .
Step 1.8.7
Move .
Step 1.8.8
Move .
Step 1.8.9
Move .
Step 2
Step 2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.4
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.5
Set up the system of equations to find the coefficients of the partial fractions.
Step 3
Step 3.1
Solve for in .
Step 3.1.1
Rewrite the equation as .
Step 3.1.2
Divide each term in by and simplify.
Step 3.1.2.1
Divide each term in by .
Step 3.1.2.2
Simplify the left side.
Step 3.1.2.2.1
Cancel the common factor of .
Step 3.1.2.2.1.1
Cancel the common factor.
Step 3.1.2.2.1.2
Divide by .
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Combine and .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the right side.
Step 3.2.4.1
Cancel the common factor of .
Step 3.2.4.1.1
Factor out of .
Step 3.2.4.1.2
Cancel the common factor.
Step 3.2.4.1.3
Rewrite the expression.
Step 3.2.5
Replace all occurrences of in with .
Step 3.2.6
Simplify the right side.
Step 3.2.6.1
Combine and .
Step 3.3
Solve for in .
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Step 3.3.2.1
Subtract from both sides of the equation.
Step 3.3.2.2
Subtract from both sides of the equation.
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Simplify each term.
Step 3.4.2.1.1.1
Apply the distributive property.
Step 3.4.2.1.1.2
Multiply .
Step 3.4.2.1.1.2.1
Multiply by .
Step 3.4.2.1.1.2.2
Combine and .
Step 3.4.2.1.1.2.3
Multiply by .
Step 3.4.2.1.1.3
Multiply by .
Step 3.4.2.1.1.4
Move the negative in front of the fraction.
Step 3.4.2.1.2
Simplify by adding terms.
Step 3.4.2.1.2.1
Combine the opposite terms in .
Step 3.4.2.1.2.1.1
Combine the numerators over the common denominator.
Step 3.4.2.1.2.1.2
Subtract from .
Step 3.4.2.1.2.1.3
Divide by .
Step 3.4.2.1.2.2
Subtract from .
Step 3.5
Reorder and .
Step 3.6
Solve for in .
Step 3.6.1
Rewrite the equation as .
Step 3.6.2
Add to both sides of the equation.
Step 3.6.3
Divide each term in by and simplify.
Step 3.6.3.1
Divide each term in by .
Step 3.6.3.2
Simplify the left side.
Step 3.6.3.2.1
Cancel the common factor of .
Step 3.6.3.2.1.1
Cancel the common factor.
Step 3.6.3.2.1.2
Divide by .
Step 3.6.3.3
Simplify the right side.
Step 3.6.3.3.1
Simplify each term.
Step 3.6.3.3.1.1
Move the negative in front of the fraction.
Step 3.6.3.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.3.3.1.3
Move the negative in front of the fraction.
Step 3.6.3.3.1.4
Multiply .
Step 3.6.3.3.1.4.1
Multiply by .
Step 3.6.3.3.1.4.2
Multiply by .
Step 3.7
Replace all occurrences of with in each equation.
Step 3.7.1
Replace all occurrences of in with .
Step 3.7.2
Simplify the right side.
Step 3.7.2.1
Simplify each term.
Step 3.7.2.1.1
Apply the distributive property.
Step 3.7.2.1.2
Cancel the common factor of .
Step 3.7.2.1.2.1
Move the leading negative in into the numerator.
Step 3.7.2.1.2.2
Factor out of .
Step 3.7.2.1.2.3
Cancel the common factor.
Step 3.7.2.1.2.4
Rewrite the expression.
Step 3.7.2.1.3
Multiply by .
Step 3.7.2.1.4
Cancel the common factor of .
Step 3.7.2.1.4.1
Move the leading negative in into the numerator.
Step 3.7.2.1.4.2
Factor out of .
Step 3.7.2.1.4.3
Factor out of .
Step 3.7.2.1.4.4
Cancel the common factor.
Step 3.7.2.1.4.5
Rewrite the expression.
Step 3.7.2.1.5
Combine and .
Step 3.7.2.1.6
Multiply by .
Step 3.7.3
Replace all occurrences of in with .
Step 3.7.4
Simplify the right side.
Step 3.7.4.1
Simplify .
Step 3.7.4.1.1
Simplify each term.
Step 3.7.4.1.1.1
Apply the distributive property.
Step 3.7.4.1.1.2
Multiply .
Step 3.7.4.1.1.2.1
Multiply by .
Step 3.7.4.1.1.2.2
Combine and .
Step 3.7.4.1.1.3
Multiply .
Step 3.7.4.1.1.3.1
Multiply by .
Step 3.7.4.1.1.3.2
Combine and .
Step 3.7.4.1.1.3.3
Multiply by .
Step 3.7.4.1.1.4
Simplify each term.
Step 3.7.4.1.1.4.1
Move the negative in front of the fraction.
Step 3.7.4.1.1.4.2
Move the negative in front of the fraction.
Step 3.7.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.7.4.1.3
Combine and .
Step 3.7.4.1.4
Combine the numerators over the common denominator.
Step 3.7.4.1.5
Simplify the numerator.
Step 3.7.4.1.5.1
Multiply by .
Step 3.7.4.1.5.2
Subtract from .
Step 3.8
Solve for in .
Step 3.8.1
Rewrite the equation as .
Step 3.8.2
Move all terms not containing to the right side of the equation.
Step 3.8.2.1
Add to both sides of the equation.
Step 3.8.2.2
Subtract from both sides of the equation.
Step 3.8.3
Divide each term in by and simplify.
Step 3.8.3.1
Divide each term in by .
Step 3.8.3.2
Simplify the left side.
Step 3.8.3.2.1
Cancel the common factor of .
Step 3.8.3.2.1.1
Cancel the common factor.
Step 3.8.3.2.1.2
Divide by .
Step 3.8.3.3
Simplify the right side.
Step 3.8.3.3.1
Simplify each term.
Step 3.8.3.3.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.8.3.3.1.2
Multiply .
Step 3.8.3.3.1.2.1
Multiply by .
Step 3.8.3.3.1.2.2
Multiply by .
Step 3.8.3.3.1.3
Multiply the numerator by the reciprocal of the denominator.
Step 3.8.3.3.1.4
Multiply .
Step 3.8.3.3.1.4.1
Multiply by .
Step 3.8.3.3.1.4.2
Multiply by .
Step 3.9
Replace all occurrences of with in each equation.
Step 3.9.1
Replace all occurrences of in with .
Step 3.9.2
Simplify the right side.
Step 3.9.2.1
Simplify .
Step 3.9.2.1.1
Simplify each term.
Step 3.9.2.1.1.1
Apply the distributive property.
Step 3.9.2.1.1.2
Multiply .
Step 3.9.2.1.1.2.1
Combine and .
Step 3.9.2.1.1.2.2
Multiply by .
Step 3.9.2.1.1.3
Multiply .
Step 3.9.2.1.1.3.1
Multiply by .
Step 3.9.2.1.1.3.2
Combine and .
Step 3.9.2.1.1.3.3
Multiply by .
Step 3.9.2.1.1.4
Move the negative in front of the fraction.
Step 3.9.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.9.2.1.3
Combine and .
Step 3.9.2.1.4
Combine the numerators over the common denominator.
Step 3.9.2.1.5
Find the common denominator.
Step 3.9.2.1.5.1
Multiply by .
Step 3.9.2.1.5.2
Multiply by .
Step 3.9.2.1.5.3
Multiply by .
Step 3.9.2.1.5.4
Multiply by .
Step 3.9.2.1.5.5
Reorder the factors of .
Step 3.9.2.1.5.6
Multiply by .
Step 3.9.2.1.5.7
Multiply by .
Step 3.9.2.1.6
Combine the numerators over the common denominator.
Step 3.9.2.1.7
Simplify each term.
Step 3.9.2.1.7.1
Multiply by .
Step 3.9.2.1.7.2
Add and .
Step 3.9.2.1.7.3
Multiply by .
Step 3.9.2.1.7.4
Multiply by .
Step 3.9.2.1.8
Subtract from .
Step 3.10
Solve for in .
Step 3.10.1
Set the numerator equal to zero.
Step 3.10.2
Solve the equation for .
Step 3.10.2.1
Subtract from both sides of the equation.
Step 3.10.2.2
Divide each term in by and simplify.
Step 3.10.2.2.1
Divide each term in by .
Step 3.10.2.2.2
Simplify the left side.
Step 3.10.2.2.2.1
Cancel the common factor of .
Step 3.10.2.2.2.1.1
Cancel the common factor.
Step 3.10.2.2.2.1.2
Divide by .
Step 3.10.2.2.3
Simplify the right side.
Step 3.10.2.2.3.1
Move the negative in front of the fraction.
Step 3.11
Replace all occurrences of with in each equation.
Step 3.11.1
Replace all occurrences of in with .
Step 3.11.2
Simplify the right side.
Step 3.11.2.1
Simplify .
Step 3.11.2.1.1
Simplify each term.
Step 3.11.2.1.1.1
Simplify the numerator.
Step 3.11.2.1.1.1.1
Multiply by .
Step 3.11.2.1.1.1.2
Combine and .
Step 3.11.2.1.1.2
Multiply by .
Step 3.11.2.1.1.3
Move the negative in front of the fraction.
Step 3.11.2.1.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 3.11.2.1.1.5
Multiply .
Step 3.11.2.1.1.5.1
Multiply by .
Step 3.11.2.1.1.5.2
Multiply by .
Step 3.11.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.11.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.11.2.1.3.1
Multiply by .
Step 3.11.2.1.3.2
Multiply by .
Step 3.11.2.1.4
Combine the numerators over the common denominator.
Step 3.11.2.1.5
Simplify the numerator.
Step 3.11.2.1.5.1
Multiply by .
Step 3.11.2.1.5.2
Subtract from .
Step 3.11.2.1.6
Cancel the common factor of and .
Step 3.11.2.1.6.1
Factor out of .
Step 3.11.2.1.6.2
Cancel the common factors.
Step 3.11.2.1.6.2.1
Factor out of .
Step 3.11.2.1.6.2.2
Cancel the common factor.
Step 3.11.2.1.6.2.3
Rewrite the expression.
Step 3.11.2.1.7
Move the negative in front of the fraction.
Step 3.11.3
Replace all occurrences of in with .
Step 3.11.4
Simplify the right side.
Step 3.11.4.1
Simplify .
Step 3.11.4.1.1
Simplify each term.
Step 3.11.4.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.11.4.1.1.2
Multiply .
Step 3.11.4.1.1.2.1
Multiply by .
Step 3.11.4.1.1.2.2
Multiply by .
Step 3.11.4.1.1.3
Multiply .
Step 3.11.4.1.1.3.1
Multiply by .
Step 3.11.4.1.1.3.2
Multiply by .
Step 3.11.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.11.4.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.11.4.1.3.1
Multiply by .
Step 3.11.4.1.3.2
Multiply by .
Step 3.11.4.1.4
Combine the numerators over the common denominator.
Step 3.11.4.1.5
Simplify the numerator.
Step 3.11.4.1.5.1
Multiply by .
Step 3.11.4.1.5.2
Subtract from .
Step 3.11.4.1.6
Cancel the common factor of and .
Step 3.11.4.1.6.1
Factor out of .
Step 3.11.4.1.6.2
Cancel the common factors.
Step 3.11.4.1.6.2.1
Factor out of .
Step 3.11.4.1.6.2.2
Cancel the common factor.
Step 3.11.4.1.6.2.3
Rewrite the expression.
Step 3.11.4.1.7
Move the negative in front of the fraction.
Step 3.12
List all of the solutions.
Step 4
Replace each of the partial fraction coefficients in with the values found for , , , and .
Step 5
Step 5.1
Combine and .
Step 5.2
Move to the left of .