Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Add parentheses.
Step 1.3.1.2
Let . Substitute for all occurrences of .
Step 1.3.1.2.1
Apply the product rule to .
Step 1.3.1.2.2
Raise to the power of .
Step 1.3.1.3
Factor out of .
Step 1.3.1.3.1
Factor out of .
Step 1.3.1.3.2
Factor out of .
Step 1.3.1.3.3
Factor out of .
Step 1.3.1.4
Replace all occurrences of with .
Step 1.3.1.5
Simplify.
Step 1.3.1.5.1
Simplify each term.
Step 1.3.1.5.1.1
Apply the distributive property.
Step 1.3.1.5.1.2
Multiply by .
Step 1.3.1.5.1.3
Multiply by .
Step 1.3.1.5.1.4
Apply the distributive property.
Step 1.3.1.5.1.5
Multiply by .
Step 1.3.1.5.1.6
Multiply by .
Step 1.3.1.5.2
Subtract from .
Step 1.3.1.6
Factor out of .
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.7
Multiply by .
Step 1.3.1.8
Rewrite as .
Step 1.3.1.8.1
Rewrite as .
Step 1.3.1.8.2
Rewrite as .
Step 1.3.1.9
Pull terms out from under the radical.
Step 1.3.1.10
Raise to the power of .
Step 1.3.2
Multiply by .
Step 1.3.3
Simplify .
Step 1.4
Simplify the expression to solve for the portion of the .
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Add parentheses.
Step 1.4.1.2
Let . Substitute for all occurrences of .
Step 1.4.1.2.1
Apply the product rule to .
Step 1.4.1.2.2
Raise to the power of .
Step 1.4.1.3
Factor out of .
Step 1.4.1.3.1
Factor out of .
Step 1.4.1.3.2
Factor out of .
Step 1.4.1.3.3
Factor out of .
Step 1.4.1.4
Replace all occurrences of with .
Step 1.4.1.5
Simplify.
Step 1.4.1.5.1
Simplify each term.
Step 1.4.1.5.1.1
Apply the distributive property.
Step 1.4.1.5.1.2
Multiply by .
Step 1.4.1.5.1.3
Multiply by .
Step 1.4.1.5.1.4
Apply the distributive property.
Step 1.4.1.5.1.5
Multiply by .
Step 1.4.1.5.1.6
Multiply by .
Step 1.4.1.5.2
Subtract from .
Step 1.4.1.6
Factor out of .
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.7
Multiply by .
Step 1.4.1.8
Rewrite as .
Step 1.4.1.8.1
Rewrite as .
Step 1.4.1.8.2
Rewrite as .
Step 1.4.1.9
Pull terms out from under the radical.
Step 1.4.1.10
Raise to the power of .
Step 1.4.2
Multiply by .
Step 1.4.3
Simplify .
Step 1.4.4
Change the to .
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Add parentheses.
Step 1.5.1.2
Let . Substitute for all occurrences of .
Step 1.5.1.2.1
Apply the product rule to .
Step 1.5.1.2.2
Raise to the power of .
Step 1.5.1.3
Factor out of .
Step 1.5.1.3.1
Factor out of .
Step 1.5.1.3.2
Factor out of .
Step 1.5.1.3.3
Factor out of .
Step 1.5.1.4
Replace all occurrences of with .
Step 1.5.1.5
Simplify.
Step 1.5.1.5.1
Simplify each term.
Step 1.5.1.5.1.1
Apply the distributive property.
Step 1.5.1.5.1.2
Multiply by .
Step 1.5.1.5.1.3
Multiply by .
Step 1.5.1.5.1.4
Apply the distributive property.
Step 1.5.1.5.1.5
Multiply by .
Step 1.5.1.5.1.6
Multiply by .
Step 1.5.1.5.2
Subtract from .
Step 1.5.1.6
Factor out of .
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.7
Multiply by .
Step 1.5.1.8
Rewrite as .
Step 1.5.1.8.1
Rewrite as .
Step 1.5.1.8.2
Rewrite as .
Step 1.5.1.9
Pull terms out from under the radical.
Step 1.5.1.10
Raise to the power of .
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Change the to .
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
Split the fraction into two fractions.
Step 4
Split the fraction into two fractions.
Step 5
Move the negative in front of the fraction.
Step 6
Reorder terms.
Step 7
Remove parentheses.
Step 8