Enter a problem...
Precalculus Examples
y=√x+5
Step 1
Interchange the variables.
x=√y+5
Step 2
Step 2.1
Rewrite the equation as √y+5=x.
√y+5=x
Step 2.2
To remove the radical on the left side of the equation, square both sides of the equation.
√y+52=x2
Step 2.3
Simplify each side of the equation.
Step 2.3.1
Use n√ax=axn to rewrite √y+5 as (y+5)12.
((y+5)12)2=x2
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Simplify ((y+5)12)2.
Step 2.3.2.1.1
Multiply the exponents in ((y+5)12)2.
Step 2.3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(y+5)12⋅2=x2
Step 2.3.2.1.1.2
Cancel the common factor of 2.
Step 2.3.2.1.1.2.1
Cancel the common factor.
(y+5)12⋅2=x2
Step 2.3.2.1.1.2.2
Rewrite the expression.
(y+5)1=x2
(y+5)1=x2
(y+5)1=x2
Step 2.3.2.1.2
Simplify.
y+5=x2
y+5=x2
y+5=x2
y+5=x2
Step 2.4
Subtract 5 from both sides of the equation.
y=x2-5
y=x2-5
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=x2-5
Step 4
Step 4.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 4.2
Evaluate f-1(f(x)).
Step 4.2.1
Set up the composite result function.
f-1(f(x))
Step 4.2.2
Evaluate f-1(√x+5) by substituting in the value of f into f-1.
f-1(√x+5)=(√x+5)2-5
Step 4.2.3
Rewrite √x+52 as x+5.
Step 4.2.3.1
Use n√ax=axn to rewrite √x+5 as (x+5)12.
f-1(√x+5)=((x+5)12)2-5
Step 4.2.3.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(√x+5)=(x+5)12⋅2-5
Step 4.2.3.3
Combine 12 and 2.
f-1(√x+5)=(x+5)22-5
Step 4.2.3.4
Cancel the common factor of 2.
Step 4.2.3.4.1
Cancel the common factor.
f-1(√x+5)=(x+5)22-5
Step 4.2.3.4.2
Rewrite the expression.
f-1(√x+5)=(x+5)-5
f-1(√x+5)=(x+5)-5
Step 4.2.3.5
Simplify.
f-1(√x+5)=x+5-5
f-1(√x+5)=x+5-5
Step 4.2.4
Combine the opposite terms in x+5-5.
Step 4.2.4.1
Subtract 5 from 5.
f-1(√x+5)=x+0
Step 4.2.4.2
Add x and 0.
f-1(√x+5)=x
f-1(√x+5)=x
f-1(√x+5)=x
Step 4.3
Evaluate f(f-1(x)).
Step 4.3.1
Set up the composite result function.
f(f-1(x))
Step 4.3.2
Evaluate f(x2-5) by substituting in the value of f-1 into f.
f(x2-5)=√(x2-5)+5
Step 4.3.3
Add -5 and 5.
f(x2-5)=√x2+0
Step 4.3.4
Add x2 and 0.
f(x2-5)=√x2
Step 4.3.5
Pull terms out from under the radical, assuming positive real numbers.
f(x2-5)=x
f(x2-5)=x
Step 4.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=x2-5 is the inverse of f(x)=√x+5.
f-1(x)=x2-5
f-1(x)=x2-5