Precalculus Examples

Find the Asymptotes f(x)=cot(3x-pi/2)
Step 1
For any , vertical asymptotes occur at , where is an integer. Use the basic period for , , to find the vertical asymptotes for . Set the inside of the cotangent function, , for equal to to find where the vertical asymptote occurs for .
Step 2
Solve for .
Tap for more steps...
Step 2.1
Add to both sides of the equation.
Step 2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 2.2.3.2
Multiply .
Tap for more steps...
Step 2.2.3.2.1
Multiply by .
Step 2.2.3.2.2
Multiply by .
Step 3
Set the inside of the cotangent function equal to .
Step 4
Solve for .
Tap for more steps...
Step 4.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 4.1.1
Add to both sides of the equation.
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
Combine and .
Step 4.1.4
Combine the numerators over the common denominator.
Step 4.1.5
Simplify the numerator.
Tap for more steps...
Step 4.1.5.1
Move to the left of .
Step 4.1.5.2
Add and .
Step 4.2
Divide each term in by and simplify.
Tap for more steps...
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 4.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.3.2
Cancel the common factor of .
Tap for more steps...
Step 4.2.3.2.1
Factor out of .
Step 4.2.3.2.2
Cancel the common factor.
Step 4.2.3.2.3
Rewrite the expression.
Step 5
The basic period for will occur at , where and are vertical asymptotes.
Step 6
The absolute value is the distance between a number and zero. The distance between and is .
Step 7
The vertical asymptotes for occur at , , and every , where is an integer.
Step 8
Cotangent only has vertical asymptotes.
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: where is an integer
Step 9