Precalculus Examples

Write as a Single Logarithm 5 log base b of 2x- log base b of x =
5logb(2x)-logb(x)5logb(2x)logb(x)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify 5logb(2x)5logb(2x) by moving 55 inside the logarithm.
logb((2x)5)-logb(x)logb((2x)5)logb(x)
Step 1.2
Apply the product rule to 2x2x.
logb(25x5)-logb(x)logb(25x5)logb(x)
Step 1.3
Raise 22 to the power of 55.
logb(32x5)-logb(x)logb(32x5)logb(x)
logb(32x5)-logb(x)logb(32x5)logb(x)
Step 2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
logb(32x5x)logb(32x5x)
Step 3
Cancel the common factor of x5x5 and xx.
Tap for more steps...
Step 3.1
Factor xx out of 32x532x5.
logb(x(32x4)x)logb(x(32x4)x)
Step 3.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1
Raise xx to the power of 11.
logb(x(32x4)x1)logb(x(32x4)x1)
Step 3.2.2
Factor xx out of x1x1.
logb(x(32x4)x1)logb(x(32x4)x1)
Step 3.2.3
Cancel the common factor.
logb(x(32x4)x1)
Step 3.2.4
Rewrite the expression.
logb(32x41)
Step 3.2.5
Divide 32x4 by 1.
logb(32x4)
logb(32x4)
logb(32x4)
 [x2  12  π  xdx ]