Precalculus Examples

Write in Standard Form x^2+2xy+y^2+x-y-4=0
Step 1
Solve for .
Tap for more steps...
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Simplify the numerator.
Tap for more steps...
Step 1.3.1.1
Apply the distributive property.
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Multiply by .
Step 1.3.1.4
Rewrite as .
Step 1.3.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 1.3.1.5.1
Apply the distributive property.
Step 1.3.1.5.2
Apply the distributive property.
Step 1.3.1.5.3
Apply the distributive property.
Step 1.3.1.6
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1.6.1
Simplify each term.
Tap for more steps...
Step 1.3.1.6.1.1
Rewrite using the commutative property of multiplication.
Step 1.3.1.6.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.3.1.6.1.2.1
Move .
Step 1.3.1.6.1.2.2
Multiply by .
Step 1.3.1.6.1.3
Multiply by .
Step 1.3.1.6.1.4
Multiply by .
Step 1.3.1.6.1.5
Multiply by .
Step 1.3.1.6.1.6
Multiply by .
Step 1.3.1.6.2
Subtract from .
Step 1.3.1.7
Multiply by .
Step 1.3.1.8
Apply the distributive property.
Step 1.3.1.9
Multiply by .
Step 1.3.1.10
Subtract from .
Step 1.3.1.11
Add and .
Step 1.3.1.12
Subtract from .
Step 1.3.1.13
Add and .
Step 1.3.2
Multiply by .
Step 1.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Apply the distributive property.
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Multiply by .
Step 1.4.1.4
Rewrite as .
Step 1.4.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.1.5.1
Apply the distributive property.
Step 1.4.1.5.2
Apply the distributive property.
Step 1.4.1.5.3
Apply the distributive property.
Step 1.4.1.6
Simplify and combine like terms.
Tap for more steps...
Step 1.4.1.6.1
Simplify each term.
Tap for more steps...
Step 1.4.1.6.1.1
Rewrite using the commutative property of multiplication.
Step 1.4.1.6.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.4.1.6.1.2.1
Move .
Step 1.4.1.6.1.2.2
Multiply by .
Step 1.4.1.6.1.3
Multiply by .
Step 1.4.1.6.1.4
Multiply by .
Step 1.4.1.6.1.5
Multiply by .
Step 1.4.1.6.1.6
Multiply by .
Step 1.4.1.6.2
Subtract from .
Step 1.4.1.7
Multiply by .
Step 1.4.1.8
Apply the distributive property.
Step 1.4.1.9
Multiply by .
Step 1.4.1.10
Subtract from .
Step 1.4.1.11
Add and .
Step 1.4.1.12
Subtract from .
Step 1.4.1.13
Add and .
Step 1.4.2
Multiply by .
Step 1.4.3
Change the to .
Step 1.4.4
Factor out of .
Step 1.4.5
Rewrite as .
Step 1.4.6
Factor out of .
Step 1.4.7
Factor out of .
Step 1.4.8
Factor out of .
Step 1.4.9
Rewrite as .
Step 1.4.10
Move the negative in front of the fraction.
Step 1.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Apply the distributive property.
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Multiply by .
Step 1.5.1.4
Rewrite as .
Step 1.5.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 1.5.1.5.1
Apply the distributive property.
Step 1.5.1.5.2
Apply the distributive property.
Step 1.5.1.5.3
Apply the distributive property.
Step 1.5.1.6
Simplify and combine like terms.
Tap for more steps...
Step 1.5.1.6.1
Simplify each term.
Tap for more steps...
Step 1.5.1.6.1.1
Rewrite using the commutative property of multiplication.
Step 1.5.1.6.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.5.1.6.1.2.1
Move .
Step 1.5.1.6.1.2.2
Multiply by .
Step 1.5.1.6.1.3
Multiply by .
Step 1.5.1.6.1.4
Multiply by .
Step 1.5.1.6.1.5
Multiply by .
Step 1.5.1.6.1.6
Multiply by .
Step 1.5.1.6.2
Subtract from .
Step 1.5.1.7
Multiply by .
Step 1.5.1.8
Apply the distributive property.
Step 1.5.1.9
Multiply by .
Step 1.5.1.10
Subtract from .
Step 1.5.1.11
Add and .
Step 1.5.1.12
Subtract from .
Step 1.5.1.13
Add and .
Step 1.5.2
Multiply by .
Step 1.5.3
Change the to .
Step 1.5.4
Factor out of .
Step 1.5.5
Rewrite as .
Step 1.5.6
Factor out of .
Step 1.5.7
Factor out of .
Step 1.5.8
Factor out of .
Step 1.5.9
Rewrite as .
Step 1.5.10
Move the negative in front of the fraction.
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
Split the fraction into two fractions.
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Split the fraction into two fractions.
Step 4.2
Simplify each term.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.2.2
Move the negative in front of the fraction.
Step 4.3
Move the negative in front of the fraction.
Step 5
Apply the distributive property.
Step 6
Split the fraction into two fractions.
Step 7
Simplify each term.
Tap for more steps...
Step 7.1
Split the fraction into two fractions.
Step 7.2
Simplify each term.
Tap for more steps...
Step 7.2.1
Cancel the common factor of .
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
Step 7.2.1.2
Divide by .
Step 7.2.2
Move the negative in front of the fraction.
Step 8
Apply the distributive property.
Step 9
Reorder terms.
Step 10
Remove parentheses.
Step 11