Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1.1
Subtract from both sides of the equation.
Step 1.1.1.2
Subtract from both sides of the equation.
Step 1.1.1.3
Subtract from both sides of the equation.
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of .
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Simplify each term.
Step 1.1.2.3.1.1
Dividing two negative values results in a positive value.
Step 1.1.2.3.1.2
Cancel the common factor of and .
Step 1.1.2.3.1.2.1
Factor out of .
Step 1.1.2.3.1.2.2
Cancel the common factors.
Step 1.1.2.3.1.2.2.1
Factor out of .
Step 1.1.2.3.1.2.2.2
Cancel the common factor.
Step 1.1.2.3.1.2.2.3
Rewrite the expression.
Step 1.1.2.3.1.3
Dividing two negative values results in a positive value.
Step 1.2
Complete the square for .
Step 1.2.1
Use the form , to find the values of , , and .
Step 1.2.2
Consider the vertex form of a parabola.
Step 1.2.3
Find the value of using the formula .
Step 1.2.3.1
Substitute the values of and into the formula .
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.3.2.2
Combine and .
Step 1.2.3.2.3
Cancel the common factor of and .
Step 1.2.3.2.3.1
Factor out of .
Step 1.2.3.2.3.2
Cancel the common factors.
Step 1.2.3.2.3.2.1
Factor out of .
Step 1.2.3.2.3.2.2
Cancel the common factor.
Step 1.2.3.2.3.2.3
Rewrite the expression.
Step 1.2.3.2.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.3.2.5
Cancel the common factor of .
Step 1.2.3.2.5.1
Factor out of .
Step 1.2.3.2.5.2
Cancel the common factor.
Step 1.2.3.2.5.3
Rewrite the expression.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of , and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Simplify each term.
Step 1.2.4.2.1.1
Simplify the numerator.
Step 1.2.4.2.1.1.1
Apply the product rule to .
Step 1.2.4.2.1.1.2
One to any power is one.
Step 1.2.4.2.1.1.3
Raise to the power of .
Step 1.2.4.2.1.2
Combine and .
Step 1.2.4.2.1.3
Cancel the common factor of and .
Step 1.2.4.2.1.3.1
Factor out of .
Step 1.2.4.2.1.3.2
Cancel the common factors.
Step 1.2.4.2.1.3.2.1
Factor out of .
Step 1.2.4.2.1.3.2.2
Cancel the common factor.
Step 1.2.4.2.1.3.2.3
Rewrite the expression.
Step 1.2.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.1.5
Cancel the common factor of .
Step 1.2.4.2.1.5.1
Factor out of .
Step 1.2.4.2.1.5.2
Cancel the common factor.
Step 1.2.4.2.1.5.3
Rewrite the expression.
Step 1.2.4.2.2
Combine the numerators over the common denominator.
Step 1.2.4.2.3
Subtract from .
Step 1.2.4.2.4
Divide by .
Step 1.2.5
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4