Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1.1
Subtract from both sides of the equation.
Step 1.1.1.2
Add to both sides of the equation.
Step 1.1.1.3
Subtract from both sides of the equation.
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of .
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Simplify each term.
Step 1.1.2.3.1.1
Cancel the common factor of and .
Step 1.1.2.3.1.1.1
Factor out of .
Step 1.1.2.3.1.1.2
Cancel the common factors.
Step 1.1.2.3.1.1.2.1
Factor out of .
Step 1.1.2.3.1.1.2.2
Cancel the common factor.
Step 1.1.2.3.1.1.2.3
Rewrite the expression.
Step 1.1.2.3.1.2
Move the negative in front of the fraction.
Step 1.1.2.3.1.3
Cancel the common factor of and .
Step 1.1.2.3.1.3.1
Factor out of .
Step 1.1.2.3.1.3.2
Cancel the common factors.
Step 1.1.2.3.1.3.2.1
Factor out of .
Step 1.1.2.3.1.3.2.2
Cancel the common factor.
Step 1.1.2.3.1.3.2.3
Rewrite the expression.
Step 1.1.2.3.1.4
Move the negative in front of the fraction.
Step 1.2
Complete the square for .
Step 1.2.1
Use the form , to find the values of , , and .
Step 1.2.2
Consider the vertex form of a parabola.
Step 1.2.3
Find the value of using the formula .
Step 1.2.3.1
Substitute the values of and into the formula .
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.3.2.2
Cancel the common factor of and .
Step 1.2.3.2.2.1
Rewrite as .
Step 1.2.3.2.2.2
Move the negative in front of the fraction.
Step 1.2.3.2.3
Combine and .
Step 1.2.3.2.4
Cancel the common factor of and .
Step 1.2.3.2.4.1
Factor out of .
Step 1.2.3.2.4.2
Cancel the common factors.
Step 1.2.3.2.4.2.1
Factor out of .
Step 1.2.3.2.4.2.2
Cancel the common factor.
Step 1.2.3.2.4.2.3
Rewrite the expression.
Step 1.2.3.2.5
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.3.2.6
Cancel the common factor of .
Step 1.2.3.2.6.1
Factor out of .
Step 1.2.3.2.6.2
Factor out of .
Step 1.2.3.2.6.3
Cancel the common factor.
Step 1.2.3.2.6.4
Rewrite the expression.
Step 1.2.3.2.7
Multiply by .
Step 1.2.3.2.8
Combine and .
Step 1.2.3.2.9
Multiply by .
Step 1.2.3.2.10
Move the negative in front of the fraction.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of , and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Simplify each term.
Step 1.2.4.2.1.1
Simplify the numerator.
Step 1.2.4.2.1.1.1
Apply the product rule to .
Step 1.2.4.2.1.1.2
Raise to the power of .
Step 1.2.4.2.1.1.3
Raise to the power of .
Step 1.2.4.2.1.2
Simplify the denominator.
Step 1.2.4.2.1.2.1
Multiply by .
Step 1.2.4.2.1.2.2
Combine and .
Step 1.2.4.2.1.3
Reduce the expression by cancelling the common factors.
Step 1.2.4.2.1.3.1
Cancel the common factor of and .
Step 1.2.4.2.1.3.1.1
Factor out of .
Step 1.2.4.2.1.3.1.2
Cancel the common factors.
Step 1.2.4.2.1.3.1.2.1
Factor out of .
Step 1.2.4.2.1.3.1.2.2
Cancel the common factor.
Step 1.2.4.2.1.3.1.2.3
Rewrite the expression.
Step 1.2.4.2.1.3.2
Move the negative in front of the fraction.
Step 1.2.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.1.5
Cancel the common factor of .
Step 1.2.4.2.1.5.1
Move the leading negative in into the numerator.
Step 1.2.4.2.1.5.2
Factor out of .
Step 1.2.4.2.1.5.3
Factor out of .
Step 1.2.4.2.1.5.4
Cancel the common factor.
Step 1.2.4.2.1.5.5
Rewrite the expression.
Step 1.2.4.2.1.6
Multiply by .
Step 1.2.4.2.1.7
Multiply by .
Step 1.2.4.2.1.8
Multiply by .
Step 1.2.4.2.1.9
Move the negative in front of the fraction.
Step 1.2.4.2.1.10
Multiply .
Step 1.2.4.2.1.10.1
Multiply by .
Step 1.2.4.2.1.10.2
Multiply by .
Step 1.2.4.2.2
Combine the numerators over the common denominator.
Step 1.2.4.2.3
Add and .
Step 1.2.4.2.4
Cancel the common factor of and .
Step 1.2.4.2.4.1
Factor out of .
Step 1.2.4.2.4.2
Cancel the common factors.
Step 1.2.4.2.4.2.1
Factor out of .
Step 1.2.4.2.4.2.2
Cancel the common factor.
Step 1.2.4.2.4.2.3
Rewrite the expression.
Step 1.2.4.2.5
Move the negative in front of the fraction.
Step 1.2.5
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4