Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Rewrite the equation as .
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of .
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Divide by .
Step 1.1.3
Add to both sides of the equation.
Step 1.1.4
Reorder terms.
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Rewrite as .
Step 1.2.1.1.2
Expand using the FOIL Method.
Step 1.2.1.1.2.1
Apply the distributive property.
Step 1.2.1.1.2.2
Apply the distributive property.
Step 1.2.1.1.2.3
Apply the distributive property.
Step 1.2.1.1.3
Simplify and combine like terms.
Step 1.2.1.1.3.1
Simplify each term.
Step 1.2.1.1.3.1.1
Multiply by .
Step 1.2.1.1.3.1.2
Move to the left of .
Step 1.2.1.1.3.1.3
Multiply by .
Step 1.2.1.1.3.2
Add and .
Step 1.2.1.1.4
Apply the distributive property.
Step 1.2.1.1.5
Simplify.
Step 1.2.1.1.5.1
Combine and .
Step 1.2.1.1.5.2
Cancel the common factor of .
Step 1.2.1.1.5.2.1
Factor out of .
Step 1.2.1.1.5.2.2
Factor out of .
Step 1.2.1.1.5.2.3
Cancel the common factor.
Step 1.2.1.1.5.2.4
Rewrite the expression.
Step 1.2.1.1.5.3
Combine and .
Step 1.2.1.1.5.4
Combine and .
Step 1.2.1.1.5.5
Cancel the common factor of .
Step 1.2.1.1.5.5.1
Factor out of .
Step 1.2.1.1.5.5.2
Factor out of .
Step 1.2.1.1.5.5.3
Cancel the common factor.
Step 1.2.1.1.5.5.4
Rewrite the expression.
Step 1.2.1.1.5.6
Combine and .
Step 1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.1.3
Combine and .
Step 1.2.1.4
Combine the numerators over the common denominator.
Step 1.2.1.5
Simplify the numerator.
Step 1.2.1.5.1
Multiply by .
Step 1.2.1.5.2
Add and .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.2
Cancel the common factor of .
Step 1.2.4.2.2.1
Cancel the common factor.
Step 1.2.4.2.2.2
Rewrite the expression.
Step 1.2.4.2.3
Multiply by .
Step 1.2.4.2.4
Combine and .
Step 1.2.4.2.5
Cancel the common factor of and .
Step 1.2.4.2.5.1
Factor out of .
Step 1.2.4.2.5.2
Cancel the common factors.
Step 1.2.4.2.5.2.1
Factor out of .
Step 1.2.4.2.5.2.2
Cancel the common factor.
Step 1.2.4.2.5.2.3
Rewrite the expression.
Step 1.2.4.2.6
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.7
Multiply by .
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Simplify the numerator.
Step 1.2.5.2.1.1.1
Apply the product rule to .
Step 1.2.5.2.1.1.2
Raise to the power of .
Step 1.2.5.2.1.1.3
Raise to the power of .
Step 1.2.5.2.1.2
Combine and .
Step 1.2.5.2.1.3
Cancel the common factor of and .
Step 1.2.5.2.1.3.1
Factor out of .
Step 1.2.5.2.1.3.2
Cancel the common factors.
Step 1.2.5.2.1.3.2.1
Factor out of .
Step 1.2.5.2.1.3.2.2
Cancel the common factor.
Step 1.2.5.2.1.3.2.3
Rewrite the expression.
Step 1.2.5.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.5.2.1.5
Cancel the common factor of .
Step 1.2.5.2.1.5.1
Factor out of .
Step 1.2.5.2.1.5.2
Cancel the common factor.
Step 1.2.5.2.1.5.3
Rewrite the expression.
Step 1.2.5.2.2
Combine the numerators over the common denominator.
Step 1.2.5.2.3
Subtract from .
Step 1.2.5.2.4
Divide by .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4