Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Raise to the power of .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Apply the distributive property.
Step 1.3.1.4
Simplify.
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.5
Subtract from .
Step 1.3.1.6
Rewrite in a factored form.
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.1.1
Factor out of .
Step 1.3.1.6.1.2
Factor out of .
Step 1.3.1.6.1.3
Factor out of .
Step 1.3.1.6.1.4
Factor out of .
Step 1.3.1.6.1.5
Factor out of .
Step 1.3.1.6.2
Factor using the perfect square rule.
Step 1.3.1.6.2.1
Rewrite as .
Step 1.3.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.3.1.6.2.3
Rewrite the polynomial.
Step 1.3.1.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.3.1.7
Rewrite as .
Step 1.3.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 1.3.1.9
Apply the distributive property.
Step 1.3.1.10
Multiply by .
Step 1.3.2
Multiply by .
Step 1.3.3
Move the negative in front of the fraction.
Step 1.4
Simplify the expression to solve for the portion of the .
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Simplify.
Step 1.4.1.4.1
Multiply by .
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.5
Subtract from .
Step 1.4.1.6
Rewrite in a factored form.
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.1.1
Factor out of .
Step 1.4.1.6.1.2
Factor out of .
Step 1.4.1.6.1.3
Factor out of .
Step 1.4.1.6.1.4
Factor out of .
Step 1.4.1.6.1.5
Factor out of .
Step 1.4.1.6.2
Factor using the perfect square rule.
Step 1.4.1.6.2.1
Rewrite as .
Step 1.4.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.4.1.6.2.3
Rewrite the polynomial.
Step 1.4.1.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.4.1.7
Rewrite as .
Step 1.4.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 1.4.1.9
Apply the distributive property.
Step 1.4.1.10
Multiply by .
Step 1.4.2
Multiply by .
Step 1.4.3
Move the negative in front of the fraction.
Step 1.4.4
Change the to .
Step 1.4.5
Cancel the common factor of and .
Step 1.4.5.1
Factor out of .
Step 1.4.5.2
Factor out of .
Step 1.4.5.3
Factor out of .
Step 1.4.5.4
Factor out of .
Step 1.4.5.5
Factor out of .
Step 1.4.5.6
Cancel the common factors.
Step 1.4.5.6.1
Factor out of .
Step 1.4.5.6.2
Cancel the common factor.
Step 1.4.5.6.3
Rewrite the expression.
Step 1.4.6
Add and .
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Simplify.
Step 1.5.1.4.1
Multiply by .
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.5
Subtract from .
Step 1.5.1.6
Rewrite in a factored form.
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.1.1
Factor out of .
Step 1.5.1.6.1.2
Factor out of .
Step 1.5.1.6.1.3
Factor out of .
Step 1.5.1.6.1.4
Factor out of .
Step 1.5.1.6.1.5
Factor out of .
Step 1.5.1.6.2
Factor using the perfect square rule.
Step 1.5.1.6.2.1
Rewrite as .
Step 1.5.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.5.1.6.2.3
Rewrite the polynomial.
Step 1.5.1.6.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.5.1.7
Rewrite as .
Step 1.5.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 1.5.1.9
Apply the distributive property.
Step 1.5.1.10
Multiply by .
Step 1.5.2
Multiply by .
Step 1.5.3
Move the negative in front of the fraction.
Step 1.5.4
Change the to .
Step 1.5.5
Cancel the common factor of and .
Step 1.5.5.1
Rewrite as .
Step 1.5.5.2
Factor out of .
Step 1.5.5.3
Factor out of .
Step 1.5.5.4
Cancel the common factors.
Step 1.5.5.4.1
Factor out of .
Step 1.5.5.4.2
Cancel the common factor.
Step 1.5.5.4.3
Rewrite the expression.
Step 1.5.6
Add and .
Step 1.5.7
Move the negative in front of the fraction.
Step 1.5.8
Multiply .
Step 1.5.8.1
Multiply by .
Step 1.5.8.2
Multiply by .
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
Split the fraction into two fractions.
Step 4
Apply the distributive property.
Step 5
Split the fraction into two fractions.
Step 6
Move the negative in front of the fraction.
Step 7
Reorder terms.
Step 8
Remove parentheses.
Step 9