Precalculus Examples

Convert to Interval Notation x^3+5x^2-25x<=125
Step 1
Convert the inequality to an equation.
Step 2
Subtract from both sides of the equation.
Step 3
Factor the left side of the equation.
Tap for more steps...
Step 3.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 3.1.1
Group the first two terms and the last two terms.
Step 3.1.2
Factor out the greatest common factor (GCF) from each group.
Step 3.2
Factor the polynomial by factoring out the greatest common factor, .
Step 3.3
Rewrite as .
Step 3.4
Factor.
Tap for more steps...
Step 3.4.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4.2
Remove unnecessary parentheses.
Step 3.5
Combine exponents.
Tap for more steps...
Step 3.5.1
Raise to the power of .
Step 3.5.2
Raise to the power of .
Step 3.5.3
Use the power rule to combine exponents.
Step 3.5.4
Add and .
Step 4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5
Set equal to and solve for .
Tap for more steps...
Step 5.1
Set equal to .
Step 5.2
Solve for .
Tap for more steps...
Step 5.2.1
Set the equal to .
Step 5.2.2
Subtract from both sides of the equation.
Step 6
Set equal to and solve for .
Tap for more steps...
Step 6.1
Set equal to .
Step 6.2
Add to both sides of the equation.
Step 7
The final solution is all the values that make true.
Step 8
Use each root to create test intervals.
Step 9
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 9.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 9.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.1.2
Replace with in the original inequality.
Step 9.1.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 9.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 9.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.2.2
Replace with in the original inequality.
Step 9.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 9.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 9.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.3.2
Replace with in the original inequality.
Step 9.3.3
The left side is greater than the right side , which means that the given statement is false.
False
False
Step 9.4
Compare the intervals to determine which ones satisfy the original inequality.
True
True
False
True
True
False
Step 10
The solution consists of all of the true intervals.
or
Step 11
Combine the intervals.
Step 12
Convert the inequality to interval notation.
Step 13