Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Apply the distributive property.
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Multiply by .
Step 1.3.1.4
Add parentheses.
Step 1.3.1.5
Let . Substitute for all occurrences of .
Step 1.3.1.5.1
Rewrite as .
Step 1.3.1.5.2
Expand using the FOIL Method.
Step 1.3.1.5.2.1
Apply the distributive property.
Step 1.3.1.5.2.2
Apply the distributive property.
Step 1.3.1.5.2.3
Apply the distributive property.
Step 1.3.1.5.3
Simplify and combine like terms.
Step 1.3.1.5.3.1
Simplify each term.
Step 1.3.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.3.1.5.3.1.2
Multiply by by adding the exponents.
Step 1.3.1.5.3.1.2.1
Move .
Step 1.3.1.5.3.1.2.2
Multiply by .
Step 1.3.1.5.3.1.3
Multiply by .
Step 1.3.1.5.3.1.4
Multiply by .
Step 1.3.1.5.3.1.5
Multiply by .
Step 1.3.1.5.3.1.6
Multiply by .
Step 1.3.1.5.3.2
Add and .
Step 1.3.1.6
Factor out of .
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.6.4
Factor out of .
Step 1.3.1.6.5
Factor out of .
Step 1.3.1.6.6
Factor out of .
Step 1.3.1.6.7
Factor out of .
Step 1.3.1.7
Replace all occurrences of with .
Step 1.3.1.8
Simplify.
Step 1.3.1.8.1
Simplify each term.
Step 1.3.1.8.1.1
Multiply by .
Step 1.3.1.8.1.2
Apply the distributive property.
Step 1.3.1.8.1.3
Multiply by .
Step 1.3.1.8.2
Combine the opposite terms in .
Step 1.3.1.8.2.1
Subtract from .
Step 1.3.1.8.2.2
Add and .
Step 1.3.1.8.3
Add and .
Step 1.3.1.9
Factor out of .
Step 1.3.1.9.1
Factor out of .
Step 1.3.1.9.2
Factor out of .
Step 1.3.1.9.3
Factor out of .
Step 1.3.1.10
Multiply by .
Step 1.3.1.11
Rewrite as .
Step 1.3.1.11.1
Rewrite as .
Step 1.3.1.11.2
Rewrite as .
Step 1.3.1.12
Pull terms out from under the radical.
Step 1.3.1.13
One to any power is one.
Step 1.3.2
Multiply by .
Step 1.4
Simplify the expression to solve for the portion of the .
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Apply the distributive property.
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Multiply by .
Step 1.4.1.4
Add parentheses.
Step 1.4.1.5
Let . Substitute for all occurrences of .
Step 1.4.1.5.1
Rewrite as .
Step 1.4.1.5.2
Expand using the FOIL Method.
Step 1.4.1.5.2.1
Apply the distributive property.
Step 1.4.1.5.2.2
Apply the distributive property.
Step 1.4.1.5.2.3
Apply the distributive property.
Step 1.4.1.5.3
Simplify and combine like terms.
Step 1.4.1.5.3.1
Simplify each term.
Step 1.4.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.4.1.5.3.1.2
Multiply by by adding the exponents.
Step 1.4.1.5.3.1.2.1
Move .
Step 1.4.1.5.3.1.2.2
Multiply by .
Step 1.4.1.5.3.1.3
Multiply by .
Step 1.4.1.5.3.1.4
Multiply by .
Step 1.4.1.5.3.1.5
Multiply by .
Step 1.4.1.5.3.1.6
Multiply by .
Step 1.4.1.5.3.2
Add and .
Step 1.4.1.6
Factor out of .
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.6.4
Factor out of .
Step 1.4.1.6.5
Factor out of .
Step 1.4.1.6.6
Factor out of .
Step 1.4.1.6.7
Factor out of .
Step 1.4.1.7
Replace all occurrences of with .
Step 1.4.1.8
Simplify.
Step 1.4.1.8.1
Simplify each term.
Step 1.4.1.8.1.1
Multiply by .
Step 1.4.1.8.1.2
Apply the distributive property.
Step 1.4.1.8.1.3
Multiply by .
Step 1.4.1.8.2
Combine the opposite terms in .
Step 1.4.1.8.2.1
Subtract from .
Step 1.4.1.8.2.2
Add and .
Step 1.4.1.8.3
Add and .
Step 1.4.1.9
Factor out of .
Step 1.4.1.9.1
Factor out of .
Step 1.4.1.9.2
Factor out of .
Step 1.4.1.9.3
Factor out of .
Step 1.4.1.10
Multiply by .
Step 1.4.1.11
Rewrite as .
Step 1.4.1.11.1
Rewrite as .
Step 1.4.1.11.2
Rewrite as .
Step 1.4.1.12
Pull terms out from under the radical.
Step 1.4.1.13
One to any power is one.
Step 1.4.2
Multiply by .
Step 1.4.3
Change the to .
Step 1.4.4
Cancel the common factor of and .
Step 1.4.4.1
Factor out of .
Step 1.4.4.2
Factor out of .
Step 1.4.4.3
Factor out of .
Step 1.4.4.4
Factor out of .
Step 1.4.4.5
Factor out of .
Step 1.4.4.6
Cancel the common factors.
Step 1.4.4.6.1
Factor out of .
Step 1.4.4.6.2
Cancel the common factor.
Step 1.4.4.6.3
Rewrite the expression.
Step 1.4.4.6.4
Divide by .
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Apply the distributive property.
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Multiply by .
Step 1.5.1.4
Add parentheses.
Step 1.5.1.5
Let . Substitute for all occurrences of .
Step 1.5.1.5.1
Rewrite as .
Step 1.5.1.5.2
Expand using the FOIL Method.
Step 1.5.1.5.2.1
Apply the distributive property.
Step 1.5.1.5.2.2
Apply the distributive property.
Step 1.5.1.5.2.3
Apply the distributive property.
Step 1.5.1.5.3
Simplify and combine like terms.
Step 1.5.1.5.3.1
Simplify each term.
Step 1.5.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.5.1.5.3.1.2
Multiply by by adding the exponents.
Step 1.5.1.5.3.1.2.1
Move .
Step 1.5.1.5.3.1.2.2
Multiply by .
Step 1.5.1.5.3.1.3
Multiply by .
Step 1.5.1.5.3.1.4
Multiply by .
Step 1.5.1.5.3.1.5
Multiply by .
Step 1.5.1.5.3.1.6
Multiply by .
Step 1.5.1.5.3.2
Add and .
Step 1.5.1.6
Factor out of .
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.6.4
Factor out of .
Step 1.5.1.6.5
Factor out of .
Step 1.5.1.6.6
Factor out of .
Step 1.5.1.6.7
Factor out of .
Step 1.5.1.7
Replace all occurrences of with .
Step 1.5.1.8
Simplify.
Step 1.5.1.8.1
Simplify each term.
Step 1.5.1.8.1.1
Multiply by .
Step 1.5.1.8.1.2
Apply the distributive property.
Step 1.5.1.8.1.3
Multiply by .
Step 1.5.1.8.2
Combine the opposite terms in .
Step 1.5.1.8.2.1
Subtract from .
Step 1.5.1.8.2.2
Add and .
Step 1.5.1.8.3
Add and .
Step 1.5.1.9
Factor out of .
Step 1.5.1.9.1
Factor out of .
Step 1.5.1.9.2
Factor out of .
Step 1.5.1.9.3
Factor out of .
Step 1.5.1.10
Multiply by .
Step 1.5.1.11
Rewrite as .
Step 1.5.1.11.1
Rewrite as .
Step 1.5.1.11.2
Rewrite as .
Step 1.5.1.12
Pull terms out from under the radical.
Step 1.5.1.13
One to any power is one.
Step 1.5.2
Multiply by .
Step 1.5.3
Change the to .
Step 1.5.4
Cancel the common factor of and .
Step 1.5.4.1
Factor out of .
Step 1.5.4.2
Factor out of .
Step 1.5.4.3
Factor out of .
Step 1.5.4.4
Factor out of .
Step 1.5.4.5
Factor out of .
Step 1.5.4.6
Cancel the common factors.
Step 1.5.4.6.1
Factor out of .
Step 1.5.4.6.2
Cancel the common factor.
Step 1.5.4.6.3
Rewrite the expression.
Step 1.5.4.6.4
Divide by .
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
The standard form is .
Step 4