Precalculus Examples

Write in Standard Form x^2+2xy+y^2-8x+8y=0
Step 1
Solve for .
Tap for more steps...
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Simplify the numerator.
Tap for more steps...
Step 1.3.1.1
Apply the distributive property.
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Multiply by .
Step 1.3.1.4
Add parentheses.
Step 1.3.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 1.3.1.5.1
Rewrite as .
Step 1.3.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.3.1.5.2.1
Apply the distributive property.
Step 1.3.1.5.2.2
Apply the distributive property.
Step 1.3.1.5.2.3
Apply the distributive property.
Step 1.3.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1.5.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.3.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.3.1.5.3.1.2.1
Move .
Step 1.3.1.5.3.1.2.2
Multiply by .
Step 1.3.1.5.3.1.3
Multiply by .
Step 1.3.1.5.3.1.4
Multiply by .
Step 1.3.1.5.3.1.5
Multiply by .
Step 1.3.1.5.3.1.6
Multiply by .
Step 1.3.1.5.3.2
Add and .
Step 1.3.1.6
Factor out of .
Tap for more steps...
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.6.4
Factor out of .
Step 1.3.1.6.5
Factor out of .
Step 1.3.1.6.6
Factor out of .
Step 1.3.1.6.7
Factor out of .
Step 1.3.1.7
Replace all occurrences of with .
Step 1.3.1.8
Simplify.
Tap for more steps...
Step 1.3.1.8.1
Simplify each term.
Tap for more steps...
Step 1.3.1.8.1.1
Multiply by .
Step 1.3.1.8.1.2
Apply the distributive property.
Step 1.3.1.8.1.3
Multiply by .
Step 1.3.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 1.3.1.8.2.1
Subtract from .
Step 1.3.1.8.2.2
Add and .
Step 1.3.1.8.3
Add and .
Step 1.3.1.9
Factor out of .
Tap for more steps...
Step 1.3.1.9.1
Factor out of .
Step 1.3.1.9.2
Factor out of .
Step 1.3.1.9.3
Factor out of .
Step 1.3.1.10
Multiply by .
Step 1.3.1.11
Rewrite as .
Tap for more steps...
Step 1.3.1.11.1
Rewrite as .
Step 1.3.1.11.2
Rewrite as .
Step 1.3.1.12
Pull terms out from under the radical.
Step 1.3.1.13
One to any power is one.
Step 1.3.2
Multiply by .
Step 1.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Apply the distributive property.
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Multiply by .
Step 1.4.1.4
Add parentheses.
Step 1.4.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 1.4.1.5.1
Rewrite as .
Step 1.4.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.1.5.2.1
Apply the distributive property.
Step 1.4.1.5.2.2
Apply the distributive property.
Step 1.4.1.5.2.3
Apply the distributive property.
Step 1.4.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 1.4.1.5.3.1
Simplify each term.
Tap for more steps...
Step 1.4.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.4.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.4.1.5.3.1.2.1
Move .
Step 1.4.1.5.3.1.2.2
Multiply by .
Step 1.4.1.5.3.1.3
Multiply by .
Step 1.4.1.5.3.1.4
Multiply by .
Step 1.4.1.5.3.1.5
Multiply by .
Step 1.4.1.5.3.1.6
Multiply by .
Step 1.4.1.5.3.2
Add and .
Step 1.4.1.6
Factor out of .
Tap for more steps...
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.6.4
Factor out of .
Step 1.4.1.6.5
Factor out of .
Step 1.4.1.6.6
Factor out of .
Step 1.4.1.6.7
Factor out of .
Step 1.4.1.7
Replace all occurrences of with .
Step 1.4.1.8
Simplify.
Tap for more steps...
Step 1.4.1.8.1
Simplify each term.
Tap for more steps...
Step 1.4.1.8.1.1
Multiply by .
Step 1.4.1.8.1.2
Apply the distributive property.
Step 1.4.1.8.1.3
Multiply by .
Step 1.4.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 1.4.1.8.2.1
Subtract from .
Step 1.4.1.8.2.2
Add and .
Step 1.4.1.8.3
Add and .
Step 1.4.1.9
Factor out of .
Tap for more steps...
Step 1.4.1.9.1
Factor out of .
Step 1.4.1.9.2
Factor out of .
Step 1.4.1.9.3
Factor out of .
Step 1.4.1.10
Multiply by .
Step 1.4.1.11
Rewrite as .
Tap for more steps...
Step 1.4.1.11.1
Rewrite as .
Step 1.4.1.11.2
Rewrite as .
Step 1.4.1.12
Pull terms out from under the radical.
Step 1.4.1.13
One to any power is one.
Step 1.4.2
Multiply by .
Step 1.4.3
Change the to .
Step 1.4.4
Cancel the common factor of and .
Tap for more steps...
Step 1.4.4.1
Factor out of .
Step 1.4.4.2
Factor out of .
Step 1.4.4.3
Factor out of .
Step 1.4.4.4
Factor out of .
Step 1.4.4.5
Factor out of .
Step 1.4.4.6
Cancel the common factors.
Tap for more steps...
Step 1.4.4.6.1
Factor out of .
Step 1.4.4.6.2
Cancel the common factor.
Step 1.4.4.6.3
Rewrite the expression.
Step 1.4.4.6.4
Divide by .
Step 1.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Apply the distributive property.
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Multiply by .
Step 1.5.1.4
Add parentheses.
Step 1.5.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 1.5.1.5.1
Rewrite as .
Step 1.5.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.5.1.5.2.1
Apply the distributive property.
Step 1.5.1.5.2.2
Apply the distributive property.
Step 1.5.1.5.2.3
Apply the distributive property.
Step 1.5.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 1.5.1.5.3.1
Simplify each term.
Tap for more steps...
Step 1.5.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.5.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.5.1.5.3.1.2.1
Move .
Step 1.5.1.5.3.1.2.2
Multiply by .
Step 1.5.1.5.3.1.3
Multiply by .
Step 1.5.1.5.3.1.4
Multiply by .
Step 1.5.1.5.3.1.5
Multiply by .
Step 1.5.1.5.3.1.6
Multiply by .
Step 1.5.1.5.3.2
Add and .
Step 1.5.1.6
Factor out of .
Tap for more steps...
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.6.4
Factor out of .
Step 1.5.1.6.5
Factor out of .
Step 1.5.1.6.6
Factor out of .
Step 1.5.1.6.7
Factor out of .
Step 1.5.1.7
Replace all occurrences of with .
Step 1.5.1.8
Simplify.
Tap for more steps...
Step 1.5.1.8.1
Simplify each term.
Tap for more steps...
Step 1.5.1.8.1.1
Multiply by .
Step 1.5.1.8.1.2
Apply the distributive property.
Step 1.5.1.8.1.3
Multiply by .
Step 1.5.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 1.5.1.8.2.1
Subtract from .
Step 1.5.1.8.2.2
Add and .
Step 1.5.1.8.3
Add and .
Step 1.5.1.9
Factor out of .
Tap for more steps...
Step 1.5.1.9.1
Factor out of .
Step 1.5.1.9.2
Factor out of .
Step 1.5.1.9.3
Factor out of .
Step 1.5.1.10
Multiply by .
Step 1.5.1.11
Rewrite as .
Tap for more steps...
Step 1.5.1.11.1
Rewrite as .
Step 1.5.1.11.2
Rewrite as .
Step 1.5.1.12
Pull terms out from under the radical.
Step 1.5.1.13
One to any power is one.
Step 1.5.2
Multiply by .
Step 1.5.3
Change the to .
Step 1.5.4
Cancel the common factor of and .
Tap for more steps...
Step 1.5.4.1
Factor out of .
Step 1.5.4.2
Factor out of .
Step 1.5.4.3
Factor out of .
Step 1.5.4.4
Factor out of .
Step 1.5.4.5
Factor out of .
Step 1.5.4.6
Cancel the common factors.
Tap for more steps...
Step 1.5.4.6.1
Factor out of .
Step 1.5.4.6.2
Cancel the common factor.
Step 1.5.4.6.3
Rewrite the expression.
Step 1.5.4.6.4
Divide by .
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
The standard form is .
Step 4