Enter a problem...
Precalculus Examples
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Step 2.1
Simplify .
Step 2.1.1
To write as a fraction with a common denominator, multiply by .
Step 2.1.2
Simplify terms.
Step 2.1.2.1
Combine and .
Step 2.1.2.2
Combine the numerators over the common denominator.
Step 2.1.3
Simplify the numerator.
Step 2.1.3.1
Apply the distributive property.
Step 2.1.3.2
Multiply by .
Step 2.1.3.3
Multiply by .
Step 2.1.3.4
Subtract from .
Step 2.1.4
Simplify with factoring out.
Step 2.1.4.1
Factor out of .
Step 2.1.4.2
Rewrite as .
Step 2.1.4.3
Factor out of .
Step 2.1.4.4
Simplify the expression.
Step 2.1.4.4.1
Rewrite as .
Step 2.1.4.4.2
Move the negative in front of the fraction.
Step 2.2
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 2.3
Add to both sides of the equation.
Step 2.4
Add to both sides of the equation.
Step 2.5
Divide each term in by and simplify.
Step 2.5.1
Divide each term in by .
Step 2.5.2
Simplify the left side.
Step 2.5.2.1
Cancel the common factor of .
Step 2.5.2.1.1
Cancel the common factor.
Step 2.5.2.1.2
Divide by .
Step 2.6
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 2.7
Consolidate the solutions.
Step 2.8
Find the domain of .
Step 2.8.1
Set the denominator in equal to to find where the expression is undefined.
Step 2.8.2
Solve for .
Step 2.8.2.1
Add to both sides of the equation.
Step 2.8.2.2
Divide each term in by and simplify.
Step 2.8.2.2.1
Divide each term in by .
Step 2.8.2.2.2
Simplify the left side.
Step 2.8.2.2.2.1
Cancel the common factor of .
Step 2.8.2.2.2.1.1
Cancel the common factor.
Step 2.8.2.2.2.1.2
Divide by .
Step 2.8.3
The domain is all values of that make the expression defined.
Step 2.9
Use each root to create test intervals.
Step 2.10
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 2.10.1
Test a value on the interval to see if it makes the inequality true.
Step 2.10.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.10.1.2
Replace with in the original inequality.
Step 2.10.1.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 2.10.2
Test a value on the interval to see if it makes the inequality true.
Step 2.10.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.10.2.2
Replace with in the original inequality.
Step 2.10.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 2.10.3
Test a value on the interval to see if it makes the inequality true.
Step 2.10.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.10.3.2
Replace with in the original inequality.
Step 2.10.3.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 2.10.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 2.11
The solution consists of all of the true intervals.
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Step 4.1
Add to both sides of the equation.
Step 4.2
Divide each term in by and simplify.
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of .
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 5
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 6