Enter a problem...
Precalculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Evaluate .
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Multiply by .
Step 1.5
Evaluate .
Step 1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.5.2
Differentiate using the Power Rule which states that is where .
Step 1.5.3
Multiply by .
Step 1.6
Differentiate using the Constant Rule.
Step 1.6.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.6.2
Add and .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 2.5
Evaluate .
Step 2.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.5.2
Differentiate using the Power Rule which states that is where .
Step 2.5.3
Multiply by .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Multiply by .
Step 3.4
Evaluate .
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3
Multiply by .
Step 3.5
Differentiate using the Constant Rule.
Step 3.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.5.2
Add and .