Enter a problem...
Precalculus Examples
Step 1
Set equal to .
Step 2
Step 2.1
Factor the left side of the equation.
Step 2.1.1
Factor out the greatest common factor from each group.
Step 2.1.1.1
Group the first two terms and the last two terms.
Step 2.1.1.2
Factor out the greatest common factor (GCF) from each group.
Step 2.1.2
Factor the polynomial by factoring out the greatest common factor, .
Step 2.1.3
Rewrite as .
Step 2.1.4
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 2.1.5
Factor.
Step 2.1.5.1
Simplify.
Step 2.1.5.1.1
Move to the left of .
Step 2.1.5.1.2
Raise to the power of .
Step 2.1.5.2
Remove unnecessary parentheses.
Step 2.1.6
Combine exponents.
Step 2.1.6.1
Raise to the power of .
Step 2.1.6.2
Raise to the power of .
Step 2.1.6.3
Use the power rule to combine exponents.
Step 2.1.6.4
Add and .
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Step 2.3.1
Set equal to .
Step 2.3.2
Solve for .
Step 2.3.2.1
Set the equal to .
Step 2.3.2.2
Add to both sides of the equation.
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Step 2.4.2.1
Use the quadratic formula to find the solutions.
Step 2.4.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.4.2.3
Simplify.
Step 2.4.2.3.1
Simplify the numerator.
Step 2.4.2.3.1.1
Raise to the power of .
Step 2.4.2.3.1.2
Multiply .
Step 2.4.2.3.1.2.1
Multiply by .
Step 2.4.2.3.1.2.2
Multiply by .
Step 2.4.2.3.1.3
Subtract from .
Step 2.4.2.3.1.4
Rewrite as .
Step 2.4.2.3.1.5
Rewrite as .
Step 2.4.2.3.1.6
Rewrite as .
Step 2.4.2.3.1.7
Rewrite as .
Step 2.4.2.3.1.7.1
Factor out of .
Step 2.4.2.3.1.7.2
Rewrite as .
Step 2.4.2.3.1.8
Pull terms out from under the radical.
Step 2.4.2.3.1.9
Move to the left of .
Step 2.4.2.3.2
Multiply by .
Step 2.4.2.4
The final answer is the combination of both solutions.
Step 2.5
The final solution is all the values that make true.
Step 3