Precalculus Examples

Simplify/Condense natural log of x-4( natural log of xy^2+3 natural log of x^-1)+ natural log of (y^6)/(x^3)
ln(x-4)(ln(xy2)+3ln(x-1))+ln(y6x3)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite the expression using the negative exponent rule b-n=1bn.
ln(x-4)(ln(xy2)+3ln(1x))+ln(y6x3)
Step 1.2
Simplify 3ln(1x) by moving 3 inside the logarithm.
ln(x-4)(ln(xy2)+ln((1x)3))+ln(y6x3)
Step 1.3
Apply the product rule to 1x.
ln(x-4)(ln(xy2)+ln(13x3))+ln(y6x3)
Step 1.4
One to any power is one.
ln(x-4)(ln(xy2)+ln(1x3))+ln(y6x3)
ln(x-4)(ln(xy2)+ln(1x3))+ln(y6x3)
Step 2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln(x-4)ln(xy21x3)+ln(y6x3)
Step 3
Cancel the common factor of x.
Tap for more steps...
Step 3.1
Factor x out of xy2.
ln(x-4)ln(x(y2)1x3)+ln(y6x3)
Step 3.2
Factor x out of x3.
ln(x-4)ln(x(y2)1xx2)+ln(y6x3)
Step 3.3
Cancel the common factor.
ln(x-4)ln(xy21xx2)+ln(y6x3)
Step 3.4
Rewrite the expression.
ln(x-4)ln(y21x2)+ln(y6x3)
ln(x-4)ln(y21x2)+ln(y6x3)
Step 4
Combine y2 and 1x2.
ln(x-4)ln(y2x2)+ln(y6x3)
 [x2  12  π  xdx ]