Precalculus Examples

Solve for x log base 5 of 3x+ log base 5 of 2x-1 = log base 5 of 16x-10
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Use the product property of logarithms, .
Step 1.2
Simplify by multiplying through.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Simplify the expression.
Tap for more steps...
Step 1.2.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2.2
Multiply by .
Step 1.3
Simplify each term.
Tap for more steps...
Step 1.3.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.3.1.1
Move .
Step 1.3.1.2
Multiply by .
Step 1.3.2
Multiply by .
Step 2
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Add to both sides of the equation.
Step 3.3
Factor by grouping.
Tap for more steps...
Step 3.3.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 3.3.1.1
Factor out of .
Step 3.3.1.2
Rewrite as plus
Step 3.3.1.3
Apply the distributive property.
Step 3.3.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 3.3.2.1
Group the first two terms and the last two terms.
Step 3.3.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to and solve for .
Tap for more steps...
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Tap for more steps...
Step 3.5.2.1
Add to both sides of the equation.
Step 3.5.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.2.2.1
Divide each term in by .
Step 3.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.2.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.2.1.2
Divide by .
Step 3.6
Set equal to and solve for .
Tap for more steps...
Step 3.6.1
Set equal to .
Step 3.6.2
Solve for .
Tap for more steps...
Step 3.6.2.1
Add to both sides of the equation.
Step 3.6.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.6.2.2.1
Divide each term in by .
Step 3.6.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.6.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.6.2.2.2.1.1
Cancel the common factor.
Step 3.6.2.2.2.1.2
Divide by .
Step 3.7
The final solution is all the values that make true.
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: