Enter a problem...
Precalculus Examples
log(v(x9+2(x8+6)(x6-1)2))log(v(x9+2(x8+6)(x6−1)2))
Step 1
Rewrite x6x6 as (x2)3(x2)3.
log(v(x9+2(x8+6)((x2)3-1)2))log⎛⎜
⎜⎝v⎛⎜
⎜⎝x9+2(x8+6)((x2)3−1)2⎞⎟
⎟⎠⎞⎟
⎟⎠
Step 2
Rewrite 11 as 1313.
log(v(x9+2(x8+6)((x2)3-13)2))log⎛⎜
⎜⎝v⎛⎜
⎜⎝x9+2(x8+6)((x2)3−13)2⎞⎟
⎟⎠⎞⎟
⎟⎠
Step 3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=x2a=x2 and b=1b=1.
log(v(x9+2(x8+6)((x2-1)((x2)2+x2⋅1+12))2))log⎛⎜
⎜⎝v⎛⎜
⎜⎝x9+2(x8+6)((x2−1)((x2)2+x2⋅1+12))2⎞⎟
⎟⎠⎞⎟
⎟⎠
Step 4
Step 4.1
Rewrite 11 as 1212.
log(v(x9+2(x8+6)((x2-12)((x2)2+x2⋅1+12))2))log⎛⎜
⎜⎝v⎛⎜
⎜⎝x9+2(x8+6)((x2−12)((x2)2+x2⋅1+12))2⎞⎟
⎟⎠⎞⎟
⎟⎠
Step 4.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
log(v(x9+2(x8+6)((x+1)(x-1)((x2)2+x2⋅1+12))2))
Step 4.3
Multiply x2 by 1.
log(v(x9+2(x8+6)((x+1)(x-1)((x2)2+x2+12))2))
log(v(x9+2(x8+6)((x+1)(x-1)((x2)2+x2+12))2))
Step 5
Apply the product rule to (x+1)(x-1)((x2)2+x2+12).
log(v(x9+2(x8+6)((x+1)(x-1))2((x2)2+x2+12)2))
Step 6
Step 6.1
Apply the distributive property.
log(v(x9+2(x8+6)(x(x-1)+1(x-1))2((x2)2+x2+12)2))
Step 6.2
Apply the distributive property.
log(v(x9+2(x8+6)(x⋅x+x⋅-1+1(x-1))2((x2)2+x2+12)2))
Step 6.3
Apply the distributive property.
log(v(x9+2(x8+6)(x⋅x+x⋅-1+1x+1⋅-1)2((x2)2+x2+12)2))
log(v(x9+2(x8+6)(x⋅x+x⋅-1+1x+1⋅-1)2((x2)2+x2+12)2))
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Multiply x by x.
log(v(x9+2(x8+6)(x2+x⋅-1+1x+1⋅-1)2((x2)2+x2+12)2))
Step 7.1.2
Move -1 to the left of x.
log(v(x9+2(x8+6)(x2-1⋅x+1x+1⋅-1)2((x2)2+x2+12)2))
Step 7.1.3
Rewrite -1x as -x.
log(v(x9+2(x8+6)(x2-x+1x+1⋅-1)2((x2)2+x2+12)2))
Step 7.1.4
Multiply x by 1.
log(v(x9+2(x8+6)(x2-x+x+1⋅-1)2((x2)2+x2+12)2))
Step 7.1.5
Multiply -1 by 1.
log(v(x9+2(x8+6)(x2-x+x-1)2((x2)2+x2+12)2))
log(v(x9+2(x8+6)(x2-x+x-1)2((x2)2+x2+12)2))
Step 7.2
Add -x and x.
log(v(x9+2(x8+6)(x2+0-1)2((x2)2+x2+12)2))
Step 7.3
Add x2 and 0.
log(v(x9+2(x8+6)(x2-1)2((x2)2+x2+12)2))
log(v(x9+2(x8+6)(x2-1)2((x2)2+x2+12)2))
Step 8
Step 8.1
Multiply the exponents in (x2)2.
Step 8.1.1
Apply the power rule and multiply exponents, (am)n=amn.
log(v(x9+2(x8+6)(x2-1)2(x2⋅2+x2+12)2))
Step 8.1.2
Multiply 2 by 2.
log(v(x9+2(x8+6)(x2-1)2(x4+x2+12)2))
log(v(x9+2(x8+6)(x2-1)2(x4+x2+12)2))
Step 8.2
One to any power is one.
log(v(x9+2(x8+6)(x2-1)2(x4+x2+1)2))
log(v(x9+2(x8+6)(x2-1)2(x4+x2+1)2))
Step 9
Rewrite 1 as 12.
log(v(x9+2(x8+6)(x2-12)2(x4+x2+1)2))
Step 10
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
log(v(x9+2(x8+6)((x+1)(x-1))2(x4+x2+1)2))
Step 11
Apply the product rule to (x+1)(x-1).
log(v(x9+2(x8+6)(x+1)2(x-1)2(x4+x2+1)2))