Precalculus Examples

Find the Center and Radius x^2+y^2-2x=0
x2+y2-2x=0x2+y22x=0
Step 1
Complete the square for x2-2xx22x.
Tap for more steps...
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-2b=2
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-221d=221
Step 1.3.2
Cancel the common factor of -22 and 22.
Tap for more steps...
Step 1.3.2.1
Factor 22 out of -22.
d=2-121d=2121
Step 1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.3.2.2.1
Factor 22 out of 2121.
d=2-12(1)d=212(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2-121
Step 1.3.2.2.3
Rewrite the expression.
d=-11
Step 1.3.2.2.4
Divide -1 by 1.
d=-1
d=-1
d=-1
d=-1
Step 1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-2)241
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Raise -2 to the power of 2.
e=0-441
Step 1.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 1.4.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 1.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 1.4.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 1.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 1.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 1.5
Substitute the values of a, d, and e into the vertex form (x-1)2-1.
(x-1)2-1
(x-1)2-1
Step 2
Substitute (x-1)2-1 for x2-2x in the equation x2+y2-2x=0.
(x-1)2-1+y2=0
Step 3
Move -1 to the right side of the equation by adding 1 to both sides.
(x-1)2+y2=0+1
Step 4
Add 0 and 1.
(x-1)2+y2=1
Step 5
This is the form of a circle. Use this form to determine the center and radius of the circle.
(x-h)2+(y-k)2=r2
Step 6
Match the values in this circle to those of the standard form. The variable r represents the radius of the circle, h represents the x-offset from the origin, and k represents the y-offset from origin.
r=1
h=1
k=0
Step 7
The center of the circle is found at (h,k).
Center: (1,0)
Step 8
These values represent the important values for graphing and analyzing a circle.
Center: (1,0)
Radius: 1
Step 9
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]