Enter a problem...
Precalculus Examples
x2+y2-2x=0x2+y2−2x=0
Step 1
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-2b=−2
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-22⋅1d=−22⋅1
Step 1.3.2
Cancel the common factor of -2−2 and 22.
Step 1.3.2.1
Factor 22 out of -2−2.
d=2⋅-12⋅1d=2⋅−12⋅1
Step 1.3.2.2
Cancel the common factors.
Step 1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-12(1)d=2⋅−12(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2⋅-12⋅1
Step 1.3.2.2.3
Rewrite the expression.
d=-11
Step 1.3.2.2.4
Divide -1 by 1.
d=-1
d=-1
d=-1
d=-1
Step 1.4
Find the value of e using the formula e=c-b24a.
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-2)24⋅1
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Raise -2 to the power of 2.
e=0-44⋅1
Step 1.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 1.4.2.1.3
Cancel the common factor of 4.
Step 1.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 1.4.2.1.3.2
Rewrite the expression.
e=0-1⋅1
e=0-1⋅1
Step 1.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 1.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 1.5
Substitute the values of a, d, and e into the vertex form (x-1)2-1.
(x-1)2-1
(x-1)2-1
Step 2
Substitute (x-1)2-1 for x2-2x in the equation x2+y2-2x=0.
(x-1)2-1+y2=0
Step 3
Move -1 to the right side of the equation by adding 1 to both sides.
(x-1)2+y2=0+1
Step 4
Add 0 and 1.
(x-1)2+y2=1
Step 5
This is the form of a circle. Use this form to determine the center and radius of the circle.
(x-h)2+(y-k)2=r2
Step 6
Match the values in this circle to those of the standard form. The variable r represents the radius of the circle, h represents the x-offset from the origin, and k represents the y-offset from origin.
r=1
h=1
k=0
Step 7
The center of the circle is found at (h,k).
Center: (1,0)
Step 8
These values represent the important values for graphing and analyzing a circle.
Center: (1,0)
Radius: 1
Step 9
