Enter a problem...
Precalculus Examples
f(x)=3x2-2xf(x)=3x2−2x
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for 3x2-2x3x2−2x.
Step 1.1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=3a=3
b=-2b=−2
c=0c=0
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-22⋅3d=−22⋅3
Step 1.1.1.3.2
Simplify the right side.
Step 1.1.1.3.2.1
Cancel the common factor of -2−2 and 22.
Step 1.1.1.3.2.1.1
Factor 22 out of -2−2.
d=2⋅-12⋅3d=2⋅−12⋅3
Step 1.1.1.3.2.1.2
Cancel the common factors.
Step 1.1.1.3.2.1.2.1
Factor 22 out of 2⋅32⋅3.
d=2⋅-12(3)d=2⋅−12(3)
Step 1.1.1.3.2.1.2.2
Cancel the common factor.
d=2⋅-12⋅3
Step 1.1.1.3.2.1.2.3
Rewrite the expression.
d=-13
d=-13
d=-13
Step 1.1.1.3.2.2
Move the negative in front of the fraction.
d=-13
d=-13
d=-13
Step 1.1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-2)24⋅3
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Raise -2 to the power of 2.
e=0-44⋅3
Step 1.1.1.4.2.1.2
Multiply 4 by 3.
e=0-412
Step 1.1.1.4.2.1.3
Cancel the common factor of 4 and 12.
Step 1.1.1.4.2.1.3.1
Factor 4 out of 4.
e=0-4(1)12
Step 1.1.1.4.2.1.3.2
Cancel the common factors.
Step 1.1.1.4.2.1.3.2.1
Factor 4 out of 12.
e=0-4⋅14⋅3
Step 1.1.1.4.2.1.3.2.2
Cancel the common factor.
e=0-4⋅14⋅3
Step 1.1.1.4.2.1.3.2.3
Rewrite the expression.
e=0-13
e=0-13
e=0-13
e=0-13
Step 1.1.1.4.2.2
Subtract 13 from 0.
e=-13
e=-13
e=-13
Step 1.1.1.5
Substitute the values of a, d, and e into the vertex form 3(x-13)2-13.
3(x-13)2-13
3(x-13)2-13
Step 1.1.2
Set y equal to the new right side.
y=3(x-13)2-13
y=3(x-13)2-13
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=3
h=13
k=-13
Step 1.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k).
(13,-13)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅3
Step 1.5.3
Multiply 4 by 3.
112
112
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(13,-14)
(13,-14)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=13
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-512
y=-512
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (13,-13)
Focus: (13,-14)
Axis of Symmetry: x=13
Directrix: y=-512
Direction: Opens Up
Vertex: (13,-13)
Focus: (13,-14)
Axis of Symmetry: x=13
Directrix: y=-512
Step 2
Step 2.1
Replace the variable x with -1 in the expression.
f(-1)=3(-1)2-2⋅-1
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Raise -1 to the power of 2.
f(-1)=3⋅1-2⋅-1
Step 2.2.1.2
Multiply 3 by 1.
f(-1)=3-2⋅-1
Step 2.2.1.3
Multiply -2 by -1.
f(-1)=3+2
f(-1)=3+2
Step 2.2.2
Add 3 and 2.
f(-1)=5
Step 2.2.3
The final answer is 5.
5
5
Step 2.3
The y value at x=-1 is 5.
y=5
Step 2.4
Replace the variable x with -2 in the expression.
f(-2)=3(-2)2-2⋅-2
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raise -2 to the power of 2.
f(-2)=3⋅4-2⋅-2
Step 2.5.1.2
Multiply 3 by 4.
f(-2)=12-2⋅-2
Step 2.5.1.3
Multiply -2 by -2.
f(-2)=12+4
f(-2)=12+4
Step 2.5.2
Add 12 and 4.
f(-2)=16
Step 2.5.3
The final answer is 16.
16
16
Step 2.6
The y value at x=-2 is 16.
y=16
Step 2.7
Replace the variable x with 1 in the expression.
f(1)=3(1)2-2⋅1
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
One to any power is one.
f(1)=3⋅1-2⋅1
Step 2.8.1.2
Multiply 3 by 1.
f(1)=3-2⋅1
Step 2.8.1.3
Multiply -2 by 1.
f(1)=3-2
f(1)=3-2
Step 2.8.2
Subtract 2 from 3.
f(1)=1
Step 2.8.3
The final answer is 1.
1
1
Step 2.9
The y value at x=1 is 1.
y=1
Step 2.10
Replace the variable x with 2 in the expression.
f(2)=3(2)2-2⋅2
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
Raise 2 to the power of 2.
f(2)=3⋅4-2⋅2
Step 2.11.1.2
Multiply 3 by 4.
f(2)=12-2⋅2
Step 2.11.1.3
Multiply -2 by 2.
f(2)=12-4
f(2)=12-4
Step 2.11.2
Subtract 4 from 12.
f(2)=8
Step 2.11.3
The final answer is 8.
8
8
Step 2.12
The y value at x=2 is 8.
y=8
Step 2.13
Graph the parabola using its properties and the selected points.
xy-216-1513-131128
xy-216-1513-131128
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (13,-13)
Focus: (13,-14)
Axis of Symmetry: x=13
Directrix: y=-512
xy-216-1513-131128
Step 4
