Precalculus Examples

Step 1
Simplify.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Move the negative in front of the fraction.
Step 2
Find where the expression is undefined.
Step 3
Consider the rational function where is the degree of the numerator and is the degree of the denominator.
1. If , then the x-axis, , is the horizontal asymptote.
2. If , then the horizontal asymptote is the line .
3. If , then there is no horizontal asymptote (there is an oblique asymptote).
Step 4
Find and .
Step 5
Since , the x-axis, , is the horizontal asymptote.
Step 6
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
Step 7
This is the set of all asymptotes.
Vertical Asymptotes:
Horizontal Asymptotes:
No Oblique Asymptotes
Step 8