Enter a problem...
Precalculus Examples
sin(45)cos(45)tan(45)
Step 1
To convert degrees to radians, multiply by π180°, since a full circle is 360° or 2π radians.
Step 2
The exact value of sin(45) is √22.
√22⋅(cos(45)tan(45))⋅π180 radians
Step 3
Step 3.1
Add parentheses.
√22⋅(cos(45)tan(45))⋅π180 radians
Step 3.2
Reorder cos(45) and tan(45).
√22⋅(tan(45)cos(45))⋅π180 radians
Step 3.3
Rewrite √22cos(45)tan(45)⋅π180 in terms of sines and cosines.
√22⋅(sin(45)cos(45)⋅cos(45))⋅π180 radians
Step 3.4
Cancel the common factors.
√22⋅sin(45)⋅π180 radians
√22⋅sin(45)⋅π180 radians
Step 4
The exact value of sin(45) is √22.
√22⋅√22⋅π180 radians
Step 5
Step 5.1
Multiply √22 by √22.
√2√22⋅2⋅π180 radians
Step 5.2
Raise √2 to the power of 1.
√2√22⋅2⋅π180 radians
Step 5.3
Raise √2 to the power of 1.
√2√22⋅2⋅π180 radians
Step 5.4
Use the power rule aman=am+n to combine exponents.
√21+12⋅2⋅π180 radians
Step 5.5
Add 1 and 1.
√222⋅2⋅π180 radians
Step 5.6
Multiply 2 by 2.
√224⋅π180 radians
√224⋅π180 radians
Step 6
Combine.
√22π4⋅180 radians
Step 7
Step 7.1
Use n√ax=axn to rewrite √2 as 212.
(212)2π4⋅180 radians
Step 7.2
Apply the power rule and multiply exponents, (am)n=amn.
212⋅2π4⋅180 radians
Step 7.3
Combine 12 and 2.
222π4⋅180 radians
Step 7.4
Cancel the common factor of 2.
Step 7.4.1
Cancel the common factor.
222π4⋅180 radians
Step 7.4.2
Rewrite the expression.
2π4⋅180 radians
2π4⋅180 radians
Step 7.5
Evaluate the exponent.
2π4⋅180 radians
2π4⋅180 radians
Step 8
Multiply 4 by 180.
2π720 radians
Step 9
Step 9.1
Factor 2 out of 2π.
2(π)720 radians
Step 9.2
Cancel the common factors.
Step 9.2.1
Factor 2 out of 720.
2π2⋅360 radians
Step 9.2.2
Cancel the common factor.
2π2⋅360 radians
Step 9.2.3
Rewrite the expression.
π360 radians
π360 radians
π360 radians