Precalculus Examples

Convert from Degrees to Radians (tan(45)+tan(15))/(1-tan(45)tan(15))
Step 1
To convert degrees to radians, multiply by , since a full circle is or radians.

Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
The exact value of is .
radians
Step 2.2
The exact value of is .
Tap for more steps...
Step 2.2.1
Split into two angles where the values of the six trigonometric functions are known.
radians
Step 2.2.2
Separate negation.
radians
Step 2.2.3
Apply the difference of angles identity.
radians
Step 2.2.4
The exact value of is .
radians
Step 2.2.5
The exact value of is .
radians
Step 2.2.6
The exact value of is .
radians
Step 2.2.7
The exact value of is .
radians
Step 2.2.8
Simplify .
Tap for more steps...
Step 2.2.8.1
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 2.2.8.1.1
Multiply by .
radians
Step 2.2.8.1.2
Combine.
radians
radians
Step 2.2.8.2
Apply the distributive property.
radians
Step 2.2.8.3
Cancel the common factor of .
Tap for more steps...
Step 2.2.8.3.1
Move the leading negative in into the numerator.
radians
Step 2.2.8.3.2
Cancel the common factor.
radians
Step 2.2.8.3.3
Rewrite the expression.
radians
radians
Step 2.2.8.4
Multiply by .
radians
Step 2.2.8.5
Simplify the denominator.
Tap for more steps...
Step 2.2.8.5.1
Multiply by .
radians
Step 2.2.8.5.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.8.5.2.1
Factor out of .
radians
Step 2.2.8.5.2.2
Cancel the common factor.
radians
Step 2.2.8.5.2.3
Rewrite the expression.
radians
radians
radians
Step 2.2.8.6
Multiply by .
radians
Step 2.2.8.7
Multiply by .
radians
Step 2.2.8.8
Expand the denominator using the FOIL method.
radians
Step 2.2.8.9
Simplify.
radians
Step 2.2.8.10
Simplify the numerator.
Tap for more steps...
Step 2.2.8.10.1
Raise to the power of .
radians
Step 2.2.8.10.2
Raise to the power of .
radians
Step 2.2.8.10.3
Use the power rule to combine exponents.
radians
Step 2.2.8.10.4
Add and .
radians
radians
Step 2.2.8.11
Rewrite as .
radians
Step 2.2.8.12
Expand using the FOIL Method.
Tap for more steps...
Step 2.2.8.12.1
Apply the distributive property.
radians
Step 2.2.8.12.2
Apply the distributive property.
radians
Step 2.2.8.12.3
Apply the distributive property.
radians
radians
Step 2.2.8.13
Simplify and combine like terms.
Tap for more steps...
Step 2.2.8.13.1
Simplify each term.
Tap for more steps...
Step 2.2.8.13.1.1
Multiply by .
radians
Step 2.2.8.13.1.2
Multiply by .
radians
Step 2.2.8.13.1.3
Multiply by .
radians
Step 2.2.8.13.1.4
Multiply .
Tap for more steps...
Step 2.2.8.13.1.4.1
Multiply by .
radians
Step 2.2.8.13.1.4.2
Multiply by .
radians
Step 2.2.8.13.1.4.3
Raise to the power of .
radians
Step 2.2.8.13.1.4.4
Raise to the power of .
radians
Step 2.2.8.13.1.4.5
Use the power rule to combine exponents.
radians
Step 2.2.8.13.1.4.6
Add and .
radians
radians
Step 2.2.8.13.1.5
Rewrite as .
Tap for more steps...
Step 2.2.8.13.1.5.1
Use to rewrite as .
radians
Step 2.2.8.13.1.5.2
Apply the power rule and multiply exponents, .
radians
Step 2.2.8.13.1.5.3
Combine and .
radians
Step 2.2.8.13.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 2.2.8.13.1.5.4.1
Cancel the common factor.
radians
Step 2.2.8.13.1.5.4.2
Rewrite the expression.
radians
radians
Step 2.2.8.13.1.5.5
Evaluate the exponent.
radians
radians
radians
Step 2.2.8.13.2
Add and .
radians
Step 2.2.8.13.3
Subtract from .
radians
radians
Step 2.2.8.14
Cancel the common factor of and .
Tap for more steps...
Step 2.2.8.14.1
Factor out of .
radians
Step 2.2.8.14.2
Factor out of .
radians
Step 2.2.8.14.3
Factor out of .
radians
Step 2.2.8.14.4
Cancel the common factors.
Tap for more steps...
Step 2.2.8.14.4.1
Factor out of .
radians
Step 2.2.8.14.4.2
Cancel the common factor.
radians
Step 2.2.8.14.4.3
Rewrite the expression.
radians
Step 2.2.8.14.4.4
Divide by .
radians
radians
radians
radians
radians
Step 2.3
Add and .
radians
radians
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
The exact value of is .
radians
Step 3.2
Multiply by .
radians
Step 3.3
The exact value of is .
Tap for more steps...
Step 3.3.1
Split into two angles where the values of the six trigonometric functions are known.
radians
Step 3.3.2
Separate negation.
radians
Step 3.3.3
Apply the difference of angles identity.
radians
Step 3.3.4
The exact value of is .
radians
Step 3.3.5
The exact value of is .
radians
Step 3.3.6
The exact value of is .
radians
Step 3.3.7
The exact value of is .
radians
Step 3.3.8
Simplify .
Tap for more steps...
Step 3.3.8.1
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 3.3.8.1.1
Multiply by .
radians
Step 3.3.8.1.2
Combine.
radians
radians
Step 3.3.8.2
Apply the distributive property.
radians
Step 3.3.8.3
Cancel the common factor of .
Tap for more steps...
Step 3.3.8.3.1
Move the leading negative in into the numerator.
radians
Step 3.3.8.3.2
Cancel the common factor.
radians
Step 3.3.8.3.3
Rewrite the expression.
radians
radians
Step 3.3.8.4
Multiply by .
radians
Step 3.3.8.5
Simplify the denominator.
Tap for more steps...
Step 3.3.8.5.1
Multiply by .
radians
Step 3.3.8.5.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.8.5.2.1
Factor out of .
radians
Step 3.3.8.5.2.2
Cancel the common factor.
radians
Step 3.3.8.5.2.3
Rewrite the expression.
radians
radians
radians
Step 3.3.8.6
Multiply by .
radians
Step 3.3.8.7
Multiply by .
radians
Step 3.3.8.8
Expand the denominator using the FOIL method.
radians
Step 3.3.8.9
Simplify.
radians
Step 3.3.8.10
Simplify the numerator.
Tap for more steps...
Step 3.3.8.10.1
Raise to the power of .
radians
Step 3.3.8.10.2
Raise to the power of .
radians
Step 3.3.8.10.3
Use the power rule to combine exponents.
radians
Step 3.3.8.10.4
Add and .
radians
radians
Step 3.3.8.11
Rewrite as .
radians
Step 3.3.8.12
Expand using the FOIL Method.
Tap for more steps...
Step 3.3.8.12.1
Apply the distributive property.
radians
Step 3.3.8.12.2
Apply the distributive property.
radians
Step 3.3.8.12.3
Apply the distributive property.
radians
radians
Step 3.3.8.13
Simplify and combine like terms.
Tap for more steps...
Step 3.3.8.13.1
Simplify each term.
Tap for more steps...
Step 3.3.8.13.1.1
Multiply by .
radians
Step 3.3.8.13.1.2
Multiply by .
radians
Step 3.3.8.13.1.3
Multiply by .
radians
Step 3.3.8.13.1.4
Multiply .
Tap for more steps...
Step 3.3.8.13.1.4.1
Multiply by .
radians
Step 3.3.8.13.1.4.2
Multiply by .
radians
Step 3.3.8.13.1.4.3
Raise to the power of .
radians
Step 3.3.8.13.1.4.4
Raise to the power of .
radians
Step 3.3.8.13.1.4.5
Use the power rule to combine exponents.
radians
Step 3.3.8.13.1.4.6
Add and .
radians
radians
Step 3.3.8.13.1.5
Rewrite as .
Tap for more steps...
Step 3.3.8.13.1.5.1
Use to rewrite as .
radians
Step 3.3.8.13.1.5.2
Apply the power rule and multiply exponents, .
radians
Step 3.3.8.13.1.5.3
Combine and .
radians
Step 3.3.8.13.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 3.3.8.13.1.5.4.1
Cancel the common factor.
radians
Step 3.3.8.13.1.5.4.2
Rewrite the expression.
radians
radians
Step 3.3.8.13.1.5.5
Evaluate the exponent.
radians
radians
radians
Step 3.3.8.13.2
Add and .
radians
Step 3.3.8.13.3
Subtract from .
radians
radians
Step 3.3.8.14
Cancel the common factor of and .
Tap for more steps...
Step 3.3.8.14.1
Factor out of .
radians
Step 3.3.8.14.2
Factor out of .
radians
Step 3.3.8.14.3
Factor out of .
radians
Step 3.3.8.14.4
Cancel the common factors.
Tap for more steps...
Step 3.3.8.14.4.1
Factor out of .
radians
Step 3.3.8.14.4.2
Cancel the common factor.
radians
Step 3.3.8.14.4.3
Rewrite the expression.
radians
Step 3.3.8.14.4.4
Divide by .
radians
radians
radians
radians
radians
Step 3.4
Apply the distributive property.
radians
Step 3.5
Multiply by .
radians
Step 3.6
Multiply .
Tap for more steps...
Step 3.6.1
Multiply by .
radians
Step 3.6.2
Multiply by .
radians
radians
Step 3.7
Subtract from .
radians
radians
Step 4
Multiply by .
radians
Step 5
Combine fractions.
Tap for more steps...
Step 5.1
Multiply by .
radians
Step 5.2
Expand the denominator using the FOIL method.
radians
Step 5.3
Simplify.
radians
radians
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Expand using the FOIL Method.
Tap for more steps...
Step 6.1.1
Apply the distributive property.
radians
Step 6.1.2
Apply the distributive property.
radians
Step 6.1.3
Apply the distributive property.
radians
radians
Step 6.2
Simplify and combine like terms.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply by .
radians
Step 6.2.1.2
Multiply by .
radians
Step 6.2.1.3
Multiply .
Tap for more steps...
Step 6.2.1.3.1
Multiply by .
radians
Step 6.2.1.3.2
Multiply by .
radians
radians
Step 6.2.1.4
Multiply .
Tap for more steps...
Step 6.2.1.4.1
Multiply by .
radians
Step 6.2.1.4.2
Multiply by .
radians
Step 6.2.1.4.3
Raise to the power of .
radians
Step 6.2.1.4.4
Raise to the power of .
radians
Step 6.2.1.4.5
Use the power rule to combine exponents.
radians
Step 6.2.1.4.6
Add and .
radians
radians
Step 6.2.1.5
Rewrite as .
Tap for more steps...
Step 6.2.1.5.1
Use to rewrite as .
radians
Step 6.2.1.5.2
Apply the power rule and multiply exponents, .
radians
Step 6.2.1.5.3
Combine and .
radians
Step 6.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 6.2.1.5.4.1
Cancel the common factor.
radians
Step 6.2.1.5.4.2
Rewrite the expression.
radians
radians
Step 6.2.1.5.5
Evaluate the exponent.
radians
radians
radians
Step 6.2.2
Add and .
radians
Step 6.2.3
Subtract from .
radians
Step 6.2.4
Add and .
radians
radians
radians
Step 7
Simplify terms.
Tap for more steps...
Step 7.1
Cancel the common factor of .
Tap for more steps...
Step 7.1.1
Factor out of .
radians
Step 7.1.2
Factor out of .
radians
Step 7.1.3
Cancel the common factor.
radians
Step 7.1.4
Rewrite the expression.
radians
radians
Step 7.2
Multiply by .
radians
Step 7.3
Multiply by .
radians
Step 7.4
Dividing two negative values results in a positive value.
radians
radians