Enter a problem...
Precalculus Examples
f(x)=4x2+20x-24
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for 4x2+20x-24.
Step 1.1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=4
b=20
c=-24
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.1.3
Find the value of d using the formula d=b2a.
Step 1.1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=202⋅4
Step 1.1.1.3.2
Simplify the right side.
Step 1.1.1.3.2.1
Cancel the common factor of 20 and 2.
Step 1.1.1.3.2.1.1
Factor 2 out of 20.
d=2⋅102⋅4
Step 1.1.1.3.2.1.2
Cancel the common factors.
Step 1.1.1.3.2.1.2.1
Factor 2 out of 2⋅4.
d=2⋅102(4)
Step 1.1.1.3.2.1.2.2
Cancel the common factor.
d=2⋅102⋅4
Step 1.1.1.3.2.1.2.3
Rewrite the expression.
d=104
d=104
d=104
Step 1.1.1.3.2.2
Cancel the common factor of 10 and 4.
Step 1.1.1.3.2.2.1
Factor 2 out of 10.
d=2(5)4
Step 1.1.1.3.2.2.2
Cancel the common factors.
Step 1.1.1.3.2.2.2.1
Factor 2 out of 4.
d=2⋅52⋅2
Step 1.1.1.3.2.2.2.2
Cancel the common factor.
d=2⋅52⋅2
Step 1.1.1.3.2.2.2.3
Rewrite the expression.
d=52
d=52
d=52
d=52
d=52
Step 1.1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-24-2024⋅4
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Raise 20 to the power of 2.
e=-24-4004⋅4
Step 1.1.1.4.2.1.2
Multiply 4 by 4.
e=-24-40016
Step 1.1.1.4.2.1.3
Divide 400 by 16.
e=-24-1⋅25
Step 1.1.1.4.2.1.4
Multiply -1 by 25.
e=-24-25
e=-24-25
Step 1.1.1.4.2.2
Subtract 25 from -24.
e=-49
e=-49
e=-49
Step 1.1.1.5
Substitute the values of a, d, and e into the vertex form 4(x+52)2-49.
4(x+52)2-49
4(x+52)2-49
Step 1.1.2
Set y equal to the new right side.
y=4(x+52)2-49
y=4(x+52)2-49
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=4
h=-52
k=-49
Step 1.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k).
(-52,-49)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅4
Step 1.5.3
Multiply 4 by 4.
116
116
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(-52,-78316)
(-52,-78316)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=-52
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-78516
y=-78516
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (-52,-49)
Focus: (-52,-78316)
Axis of Symmetry: x=-52
Directrix: y=-78516
Direction: Opens Up
Vertex: (-52,-49)
Focus: (-52,-78316)
Axis of Symmetry: x=-52
Directrix: y=-78516
Step 2
Step 2.1
Replace the variable x with -3 in the expression.
f(-3)=4(-3)2+20(-3)-24
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Raise -3 to the power of 2.
f(-3)=4⋅9+20(-3)-24
Step 2.2.1.2
Multiply 4 by 9.
f(-3)=36+20(-3)-24
Step 2.2.1.3
Multiply 20 by -3.
f(-3)=36-60-24
f(-3)=36-60-24
Step 2.2.2
Simplify by subtracting numbers.
Step 2.2.2.1
Subtract 60 from 36.
f(-3)=-24-24
Step 2.2.2.2
Subtract 24 from -24.
f(-3)=-48
f(-3)=-48
Step 2.2.3
The final answer is -48.
-48
-48
Step 2.3
The y value at x=-3 is -48.
y=-48
Step 2.4
Replace the variable x with -4 in the expression.
f(-4)=4(-4)2+20(-4)-24
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raise -4 to the power of 2.
f(-4)=4⋅16+20(-4)-24
Step 2.5.1.2
Multiply 4 by 16.
f(-4)=64+20(-4)-24
Step 2.5.1.3
Multiply 20 by -4.
f(-4)=64-80-24
f(-4)=64-80-24
Step 2.5.2
Simplify by subtracting numbers.
Step 2.5.2.1
Subtract 80 from 64.
f(-4)=-16-24
Step 2.5.2.2
Subtract 24 from -16.
f(-4)=-40
f(-4)=-40
Step 2.5.3
The final answer is -40.
-40
-40
Step 2.6
The y value at x=-4 is -40.
y=-40
Step 2.7
Replace the variable x with -1 in the expression.
f(-1)=4(-1)2+20(-1)-24
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
Raise -1 to the power of 2.
f(-1)=4⋅1+20(-1)-24
Step 2.8.1.2
Multiply 4 by 1.
f(-1)=4+20(-1)-24
Step 2.8.1.3
Multiply 20 by -1.
f(-1)=4-20-24
f(-1)=4-20-24
Step 2.8.2
Simplify by subtracting numbers.
Step 2.8.2.1
Subtract 20 from 4.
f(-1)=-16-24
Step 2.8.2.2
Subtract 24 from -16.
f(-1)=-40
f(-1)=-40
Step 2.8.3
The final answer is -40.
-40
-40
Step 2.9
The y value at x=-1 is -40.
y=-40
Step 2.10
Replace the variable x with 0 in the expression.
f(0)=4(0)2+20(0)-24
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
Raising 0 to any positive power yields 0.
f(0)=4⋅0+20(0)-24
Step 2.11.1.2
Multiply 4 by 0.
f(0)=0+20(0)-24
Step 2.11.1.3
Multiply 20 by 0.
f(0)=0+0-24
f(0)=0+0-24
Step 2.11.2
Simplify by adding and subtracting.
Step 2.11.2.1
Add 0 and 0.
f(0)=0-24
Step 2.11.2.2
Subtract 24 from 0.
f(0)=-24
f(0)=-24
Step 2.11.3
The final answer is -24.
-24
-24
Step 2.12
The y value at x=0 is -24.
y=-24
Step 2.13
Graph the parabola using its properties and the selected points.
xy-4-40-3-48-52-49-1-400-24
xy-4-40-3-48-52-49-1-400-24
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (-52,-49)
Focus: (-52,-78316)
Axis of Symmetry: x=-52
Directrix: y=-78516
xy-4-40-3-48-52-49-1-400-24
Step 4
