Precalculus Examples

Divide Using Long Polynomial Division (2x^5+4x^4-4x^3-x-3)/(x^2-2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+-+-+--
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
+-+-+--
Step 3
Multiply the new quotient term by the divisor.
+-+-+--
++-
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
+-+-+--
--+
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-+-+--
--+
++
Step 6
Pull the next term from the original dividend down into the current dividend.
+-+-+--
--+
+++-
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
+-+-+--
--+
+++-
Step 8
Multiply the new quotient term by the divisor.
+
+-+-+--
--+
+++-
++-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
+-+-+--
--+
+++-
--+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
+-+-+--
--+
+++-
--+
+
Step 11
Pull the next term from the original dividend down into the current dividend.
+
+-+-+--
--+
+++-
--+
+--
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
+++
+-+-+--
--+
+++-
--+
+--
Step 13
Multiply the new quotient term by the divisor.
+++
+-+-+--
--+
+++-
--+
+--
++-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
+++
+-+-+--
--+
+++-
--+
+--
--+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++
+-+-+--
--+
+++-
--+
+--
--+
-+
Step 16
The final answer is the quotient plus the remainder over the divisor.