Precalculus Examples

Split Using Partial Fraction Decomposition 2/(x^3-1)
Step 1
Decompose the fraction and multiply through by the common denominator.
Tap for more steps...
Step 1.1
Factor the fraction.
Tap for more steps...
Step 1.1.1
Rewrite as .
Step 1.1.2
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 1.1.3
Simplify.
Tap for more steps...
Step 1.1.3.1
Multiply by .
Step 1.1.3.2
One to any power is one.
Step 1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor is 2nd order, terms are required in the numerator. The number of terms required in the numerator is always equal to the order of the factor in the denominator.
Step 1.4
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.5
Cancel the common factor of .
Tap for more steps...
Step 1.5.1
Cancel the common factor.
Step 1.5.2
Rewrite the expression.
Step 1.6
Cancel the common factor of .
Tap for more steps...
Step 1.6.1
Cancel the common factor.
Step 1.6.2
Divide by .
Step 1.7
Simplify each term.
Tap for more steps...
Step 1.7.1
Cancel the common factor of .
Tap for more steps...
Step 1.7.1.1
Cancel the common factor.
Step 1.7.1.2
Divide by .
Step 1.7.2
Apply the distributive property.
Step 1.7.3
Multiply by .
Step 1.7.4
Cancel the common factor of .
Tap for more steps...
Step 1.7.4.1
Cancel the common factor.
Step 1.7.4.2
Divide by .
Step 1.7.5
Expand using the FOIL Method.
Tap for more steps...
Step 1.7.5.1
Apply the distributive property.
Step 1.7.5.2
Apply the distributive property.
Step 1.7.5.3
Apply the distributive property.
Step 1.7.6
Simplify each term.
Tap for more steps...
Step 1.7.6.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.6.1.1
Move .
Step 1.7.6.1.2
Multiply by .
Step 1.7.6.2
Move to the left of .
Step 1.7.6.3
Rewrite as .
Step 1.7.6.4
Move to the left of .
Step 1.7.6.5
Rewrite as .
Step 1.8
Simplify the expression.
Tap for more steps...
Step 1.8.1
Reorder and .
Step 1.8.2
Move .
Step 1.8.3
Move .
Step 1.8.4
Move .
Step 2
Create equations for the partial fraction variables and use them to set up a system of equations.
Tap for more steps...
Step 2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.4
Set up the system of equations to find the coefficients of the partial fractions.
Step 3
Solve the system of equations.
Tap for more steps...
Step 3.1
Solve for in .
Tap for more steps...
Step 3.1.1
Rewrite the equation as .
Step 3.1.2
Subtract from both sides of the equation.
Step 3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Rewrite as .
Step 3.2.2.1.2
Subtract from .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the right side.
Tap for more steps...
Step 3.2.4.1
Rewrite as .
Step 3.3
Solve for in .
Tap for more steps...
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Add to both sides of the equation.
Step 3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify .
Tap for more steps...
Step 3.4.2.1.1
Multiply by .
Step 3.4.2.1.2
Subtract from .
Step 3.5
Solve for in .
Tap for more steps...
Step 3.5.1
Rewrite the equation as .
Step 3.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.2.1
Divide each term in by .
Step 3.5.2.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.1.2
Divide by .
Step 3.5.2.3
Simplify the right side.
Tap for more steps...
Step 3.5.2.3.1
Move the negative in front of the fraction.
Step 3.6
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.6.1
Replace all occurrences of in with .
Step 3.6.2
Simplify the right side.
Tap for more steps...
Step 3.6.2.1
Simplify .
Tap for more steps...
Step 3.6.2.1.1
Multiply .
Tap for more steps...
Step 3.6.2.1.1.1
Multiply by .
Step 3.6.2.1.1.2
Combine and .
Step 3.6.2.1.1.3
Multiply by .
Step 3.6.2.1.2
Move the negative in front of the fraction.
Step 3.6.3
Replace all occurrences of in with .
Step 3.6.4
Simplify the right side.
Tap for more steps...
Step 3.6.4.1
Multiply .
Tap for more steps...
Step 3.6.4.1.1
Multiply by .
Step 3.6.4.1.2
Multiply by .
Step 3.7
List all of the solutions.
Step 4
Replace each of the partial fraction coefficients in with the values found for , , and .
Step 5
Simplify each term.
Tap for more steps...
Step 5.1
Combine and .
Step 5.2
Move to the left of .