Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.2
Multiply.
Step 1.2.1
Combine.
Step 1.2.2
Simplify the numerator.
Step 1.2.2.1
Apply the distributive property.
Step 1.2.2.2
Multiply by .
Step 1.2.2.3
Multiply .
Step 1.2.2.3.1
Raise to the power of .
Step 1.2.2.3.2
Raise to the power of .
Step 1.2.2.3.3
Use the power rule to combine exponents.
Step 1.2.2.3.4
Add and .
Step 1.2.2.4
Simplify each term.
Step 1.2.2.4.1
Rewrite as .
Step 1.2.2.4.2
Multiply by .
Step 1.2.2.5
Reorder and .
Step 1.2.3
Simplify the denominator.
Step 1.2.3.1
Expand using the FOIL Method.
Step 1.2.3.1.1
Apply the distributive property.
Step 1.2.3.1.2
Apply the distributive property.
Step 1.2.3.1.3
Apply the distributive property.
Step 1.2.3.2
Simplify.
Step 1.2.3.2.1
Multiply by .
Step 1.2.3.2.2
Multiply by .
Step 1.2.3.2.3
Raise to the power of .
Step 1.2.3.2.4
Raise to the power of .
Step 1.2.3.2.5
Use the power rule to combine exponents.
Step 1.2.3.2.6
Add and .
Step 1.2.3.2.7
Subtract from .
Step 1.2.3.2.8
Add and .
Step 1.2.3.3
Simplify each term.
Step 1.2.3.3.1
Rewrite as .
Step 1.2.3.3.2
Multiply by .
Step 1.2.3.4
Add and .
Step 1.3
Cancel the common factor of and .
Step 1.3.1
Factor out of .
Step 1.3.2
Factor out of .
Step 1.3.3
Factor out of .
Step 1.3.4
Cancel the common factors.
Step 1.3.4.1
Factor out of .
Step 1.3.4.2
Cancel the common factor.
Step 1.3.4.3
Rewrite the expression.
Step 1.3.4.4
Divide by .
Step 1.4
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.5
Multiply.
Step 1.5.1
Combine.
Step 1.5.2
Simplify the numerator.
Step 1.5.2.1
Expand using the FOIL Method.
Step 1.5.2.1.1
Apply the distributive property.
Step 1.5.2.1.2
Apply the distributive property.
Step 1.5.2.1.3
Apply the distributive property.
Step 1.5.2.2
Simplify and combine like terms.
Step 1.5.2.2.1
Simplify each term.
Step 1.5.2.2.1.1
Multiply by .
Step 1.5.2.2.1.2
Multiply by .
Step 1.5.2.2.1.3
Move to the left of .
Step 1.5.2.2.1.4
Multiply .
Step 1.5.2.2.1.4.1
Raise to the power of .
Step 1.5.2.2.1.4.2
Raise to the power of .
Step 1.5.2.2.1.4.3
Use the power rule to combine exponents.
Step 1.5.2.2.1.4.4
Add and .
Step 1.5.2.2.1.5
Rewrite as .
Step 1.5.2.2.1.6
Multiply by .
Step 1.5.2.2.2
Add and .
Step 1.5.2.2.3
Add and .
Step 1.5.3
Simplify the denominator.
Step 1.5.3.1
Expand using the FOIL Method.
Step 1.5.3.1.1
Apply the distributive property.
Step 1.5.3.1.2
Apply the distributive property.
Step 1.5.3.1.3
Apply the distributive property.
Step 1.5.3.2
Simplify.
Step 1.5.3.2.1
Multiply by .
Step 1.5.3.2.2
Multiply by .
Step 1.5.3.2.3
Multiply by .
Step 1.5.3.2.4
Multiply by .
Step 1.5.3.2.5
Raise to the power of .
Step 1.5.3.2.6
Raise to the power of .
Step 1.5.3.2.7
Use the power rule to combine exponents.
Step 1.5.3.2.8
Add and .
Step 1.5.3.2.9
Add and .
Step 1.5.3.2.10
Add and .
Step 1.5.3.3
Simplify each term.
Step 1.5.3.3.1
Rewrite as .
Step 1.5.3.3.2
Multiply by .
Step 1.5.3.4
Add and .
Step 1.6
Split the fraction into two fractions.
Step 1.7
Move the negative in front of the fraction.
Step 1.8
Apply the distributive property.
Step 1.9
Multiply .
Step 1.9.1
Multiply by .
Step 1.9.2
Multiply by .
Step 2
To write as a fraction with a common denominator, multiply by .
Step 3
Combine and .
Step 4
Combine the numerators over the common denominator.
Step 5
Step 5.1
Multiply by .
Step 5.2
Subtract from .
Step 6
Move the negative in front of the fraction.
Step 7
To write as a fraction with a common denominator, multiply by .
Step 8
Combine and .
Step 9
Combine the numerators over the common denominator.