Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Rewrite as .
Step 1.1.1.1
Factor out of .
Step 1.1.1.2
Rewrite as .
Step 1.1.2
Pull terms out from under the radical.
Step 1.2
Subtract from both sides of the equation.
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Multiply the exponents in .
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Rewrite as .
Step 3.3.1.2
Expand using the FOIL Method.
Step 3.3.1.2.1
Apply the distributive property.
Step 3.3.1.2.2
Apply the distributive property.
Step 3.3.1.2.3
Apply the distributive property.
Step 3.3.1.3
Simplify and combine like terms.
Step 3.3.1.3.1
Simplify each term.
Step 3.3.1.3.1.1
Multiply .
Step 3.3.1.3.1.1.1
Multiply by .
Step 3.3.1.3.1.1.2
Raise to the power of .
Step 3.3.1.3.1.1.3
Raise to the power of .
Step 3.3.1.3.1.1.4
Use the power rule to combine exponents.
Step 3.3.1.3.1.1.5
Add and .
Step 3.3.1.3.1.2
Rewrite as .
Step 3.3.1.3.1.2.1
Use to rewrite as .
Step 3.3.1.3.1.2.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.1.2.3
Combine and .
Step 3.3.1.3.1.2.4
Cancel the common factor of .
Step 3.3.1.3.1.2.4.1
Cancel the common factor.
Step 3.3.1.3.1.2.4.2
Rewrite the expression.
Step 3.3.1.3.1.2.5
Evaluate the exponent.
Step 3.3.1.3.1.3
Multiply by .
Step 3.3.1.3.1.4
Multiply .
Step 3.3.1.3.1.4.1
Multiply by .
Step 3.3.1.3.1.4.2
Combine using the product rule for radicals.
Step 3.3.1.3.1.5
Multiply .
Step 3.3.1.3.1.5.1
Multiply by .
Step 3.3.1.3.1.5.2
Combine using the product rule for radicals.
Step 3.3.1.3.1.6
Multiply .
Step 3.3.1.3.1.6.1
Multiply by .
Step 3.3.1.3.1.6.2
Multiply by .
Step 3.3.1.3.1.6.3
Raise to the power of .
Step 3.3.1.3.1.6.4
Raise to the power of .
Step 3.3.1.3.1.6.5
Use the power rule to combine exponents.
Step 3.3.1.3.1.6.6
Add and .
Step 3.3.1.3.1.7
Rewrite as .
Step 3.3.1.3.1.7.1
Use to rewrite as .
Step 3.3.1.3.1.7.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.1.7.3
Combine and .
Step 3.3.1.3.1.7.4
Cancel the common factor of .
Step 3.3.1.3.1.7.4.1
Cancel the common factor.
Step 3.3.1.3.1.7.4.2
Rewrite the expression.
Step 3.3.1.3.1.7.5
Simplify.
Step 3.3.1.3.2
Subtract from .
Step 3.3.1.3.2.1
Reorder and .
Step 3.3.1.3.2.2
Subtract from .
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Move all terms not containing to the right side of the equation.
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Subtract from both sides of the equation.
Step 4.2.3
Add to both sides of the equation.
Step 4.2.4
Combine the opposite terms in .
Step 4.2.4.1
Subtract from .
Step 4.2.4.2
Add and .
Step 4.2.5
Add and .
Step 5
To remove the radical on the left side of the equation, square both sides of the equation.
Step 6
Step 6.1
Use to rewrite as .
Step 6.2
Simplify the left side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Apply the distributive property.
Step 6.2.1.2
Simplify the expression.
Step 6.2.1.2.1
Multiply by .
Step 6.2.1.2.2
Apply the product rule to .
Step 6.2.1.2.3
Raise to the power of .
Step 6.2.1.2.4
Multiply the exponents in .
Step 6.2.1.2.4.1
Apply the power rule and multiply exponents, .
Step 6.2.1.2.4.2
Cancel the common factor of .
Step 6.2.1.2.4.2.1
Cancel the common factor.
Step 6.2.1.2.4.2.2
Rewrite the expression.
Step 6.2.1.3
Simplify.
Step 6.2.1.4
Apply the distributive property.
Step 6.2.1.5
Multiply.
Step 6.2.1.5.1
Multiply by .
Step 6.2.1.5.2
Multiply by .
Step 6.3
Simplify the right side.
Step 6.3.1
Simplify .
Step 6.3.1.1
Rewrite as .
Step 6.3.1.2
Expand using the FOIL Method.
Step 6.3.1.2.1
Apply the distributive property.
Step 6.3.1.2.2
Apply the distributive property.
Step 6.3.1.2.3
Apply the distributive property.
Step 6.3.1.3
Simplify and combine like terms.
Step 6.3.1.3.1
Simplify each term.
Step 6.3.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 6.3.1.3.1.2
Multiply by by adding the exponents.
Step 6.3.1.3.1.2.1
Move .
Step 6.3.1.3.1.2.2
Multiply by .
Step 6.3.1.3.1.3
Multiply by .
Step 6.3.1.3.1.4
Multiply by .
Step 6.3.1.3.1.5
Multiply by .
Step 6.3.1.3.1.6
Multiply by .
Step 6.3.1.3.2
Subtract from .
Step 7
Step 7.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 7.2
Move all terms containing to the left side of the equation.
Step 7.2.1
Add to both sides of the equation.
Step 7.2.2
Combine the opposite terms in .
Step 7.2.2.1
Add and .
Step 7.2.2.2
Add and .
Step 7.3
Subtract from both sides of the equation.
Step 7.4
Divide each term in by and simplify.
Step 7.4.1
Divide each term in by .
Step 7.4.2
Simplify the left side.
Step 7.4.2.1
Cancel the common factor of .
Step 7.4.2.1.1
Cancel the common factor.
Step 7.4.2.1.2
Divide by .
Step 7.4.3
Simplify the right side.
Step 7.4.3.1
Simplify each term.
Step 7.4.3.1.1
Cancel the common factor of and .
Step 7.4.3.1.1.1
Factor out of .
Step 7.4.3.1.1.2
Cancel the common factors.
Step 7.4.3.1.1.2.1
Factor out of .
Step 7.4.3.1.1.2.2
Cancel the common factor.
Step 7.4.3.1.1.2.3
Rewrite the expression.
Step 7.4.3.1.1.2.4
Divide by .
Step 7.4.3.1.2
Divide by .
Step 7.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.6
Simplify .
Step 7.6.1
Factor out of .
Step 7.6.1.1
Factor out of .
Step 7.6.1.2
Factor out of .
Step 7.6.1.3
Factor out of .
Step 7.6.2
Rewrite as .
Step 7.6.2.1
Factor out of .
Step 7.6.2.2
Rewrite as .
Step 7.6.2.3
Add parentheses.
Step 7.6.3
Pull terms out from under the radical.
Step 7.7
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.7.1
First, use the positive value of the to find the first solution.
Step 7.7.2
Next, use the negative value of the to find the second solution.
Step 7.7.3
The complete solution is the result of both the positive and negative portions of the solution.