Precalculus Examples

Solve for x 2 natural log of x+2 = natural log of 10x
2ln(x+2)=ln(10x)
Step 1
Simplify 2ln(x+2) by moving 2 inside the logarithm.
ln((x+2)2)=ln(10x)
Step 2
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
(x+2)2=10x
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 3.1.1
Subtract 10x from both sides of the equation.
(x+2)2-10x=0
Step 3.1.2
Simplify each term.
Tap for more steps...
Step 3.1.2.1
Rewrite (x+2)2 as (x+2)(x+2).
(x+2)(x+2)-10x=0
Step 3.1.2.2
Expand (x+2)(x+2) using the FOIL Method.
Tap for more steps...
Step 3.1.2.2.1
Apply the distributive property.
x(x+2)+2(x+2)-10x=0
Step 3.1.2.2.2
Apply the distributive property.
xx+x2+2(x+2)-10x=0
Step 3.1.2.2.3
Apply the distributive property.
xx+x2+2x+22-10x=0
xx+x2+2x+22-10x=0
Step 3.1.2.3
Simplify and combine like terms.
Tap for more steps...
Step 3.1.2.3.1
Simplify each term.
Tap for more steps...
Step 3.1.2.3.1.1
Multiply x by x.
x2+x2+2x+22-10x=0
Step 3.1.2.3.1.2
Move 2 to the left of x.
x2+2x+2x+22-10x=0
Step 3.1.2.3.1.3
Multiply 2 by 2.
x2+2x+2x+4-10x=0
x2+2x+2x+4-10x=0
Step 3.1.2.3.2
Add 2x and 2x.
x2+4x+4-10x=0
x2+4x+4-10x=0
x2+4x+4-10x=0
Step 3.1.3
Subtract 10x from 4x.
x2-6x+4=0
x2-6x+4=0
Step 3.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3.3
Substitute the values a=1, b=-6, and c=4 into the quadratic formula and solve for x.
6±(-6)2-4(14)21
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Simplify the numerator.
Tap for more steps...
Step 3.4.1.1
Raise -6 to the power of 2.
x=6±36-41421
Step 3.4.1.2
Multiply -414.
Tap for more steps...
Step 3.4.1.2.1
Multiply -4 by 1.
x=6±36-4421
Step 3.4.1.2.2
Multiply -4 by 4.
x=6±36-1621
x=6±36-1621
Step 3.4.1.3
Subtract 16 from 36.
x=6±2021
Step 3.4.1.4
Rewrite 20 as 225.
Tap for more steps...
Step 3.4.1.4.1
Factor 4 out of 20.
x=6±4(5)21
Step 3.4.1.4.2
Rewrite 4 as 22.
x=6±22521
x=6±22521
Step 3.4.1.5
Pull terms out from under the radical.
x=6±2521
x=6±2521
Step 3.4.2
Multiply 2 by 1.
x=6±252
Step 3.4.3
Simplify 6±252.
x=3±5
x=3±5
Step 3.5
The final answer is the combination of both solutions.
x=3+5,3-5
x=3+5,3-5
Step 4
The result can be shown in multiple forms.
Exact Form:
x=3+5,3-5
Decimal Form:
x=5.23606797,0.76393202
 [x2  12  π  xdx ]