Enter a problem...
Precalculus Examples
x-2x+1+2x-7x-6=x-3x2-5x-6x−2x+1+2x−7x−6=x−3x2−5x−6
Step 1
Step 1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -6 and whose sum is -5.
-6,1
Step 1.2
Write the factored form using these integers.
x-2x+1+2x-7x-6=x-3(x-6)(x+1)
x-2x+1+2x-7x-6=x-3(x-6)(x+1)
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
x+1,x-6,(x-6)(x+1)
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
The LCM of 1,1,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
1
Step 2.5
The factor for x+1 is x+1 itself.
(x+1)=x+1
(x+1) occurs 1 time.
Step 2.6
The factor for x-6 is x-6 itself.
(x-6)=x-6
(x-6) occurs 1 time.
Step 2.7
The factor for x+1 is x+1 itself.
(x+1)=x+1
(x+1) occurs 1 time.
Step 2.8
The LCM of x+1,x-6,x-6,x+1 is the result of multiplying all factors the greatest number of times they occur in either term.
(x+1)(x-6)
(x+1)(x-6)
Step 3
Step 3.1
Multiply each term in x-2x+1+2x-7x-6=x-3(x-6)(x+1) by (x+1)(x-6).
x-2x+1((x+1)(x-6))+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of x+1.
Step 3.2.1.1.1
Cancel the common factor.
x-2x+1((x+1)(x-6))+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.1.2
Rewrite the expression.
(x-2)(x-6)+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
(x-2)(x-6)+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.2
Expand (x-2)(x-6) using the FOIL Method.
Step 3.2.1.2.1
Apply the distributive property.
x(x-6)-2(x-6)+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.2.2
Apply the distributive property.
x⋅x+x⋅-6-2(x-6)+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.2.3
Apply the distributive property.
x⋅x+x⋅-6-2x-2⋅-6+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
x⋅x+x⋅-6-2x-2⋅-6+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.3
Simplify and combine like terms.
Step 3.2.1.3.1
Simplify each term.
Step 3.2.1.3.1.1
Multiply x by x.
x2+x⋅-6-2x-2⋅-6+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.3.1.2
Move -6 to the left of x.
x2-6⋅x-2x-2⋅-6+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.3.1.3
Multiply -2 by -6.
x2-6x-2x+12+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
x2-6x-2x+12+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.3.2
Subtract 2x from -6x.
x2-8x+12+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+2x-7x-6((x+1)(x-6))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.4
Cancel the common factor of x-6.
Step 3.2.1.4.1
Factor x-6 out of (x+1)(x-6).
x2-8x+12+2x-7x-6((x-6)(x+1))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.4.2
Cancel the common factor.
x2-8x+12+2x-7x-6((x-6)(x+1))=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.4.3
Rewrite the expression.
x2-8x+12+(2x-7)(x+1)=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+(2x-7)(x+1)=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.5
Expand (2x-7)(x+1) using the FOIL Method.
Step 3.2.1.5.1
Apply the distributive property.
x2-8x+12+2x(x+1)-7(x+1)=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.5.2
Apply the distributive property.
x2-8x+12+2x⋅x+2x⋅1-7(x+1)=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.5.3
Apply the distributive property.
x2-8x+12+2x⋅x+2x⋅1-7x-7⋅1=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+2x⋅x+2x⋅1-7x-7⋅1=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.6
Simplify and combine like terms.
Step 3.2.1.6.1
Simplify each term.
Step 3.2.1.6.1.1
Multiply x by x by adding the exponents.
Step 3.2.1.6.1.1.1
Move x.
x2-8x+12+2(x⋅x)+2x⋅1-7x-7⋅1=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.6.1.1.2
Multiply x by x.
x2-8x+12+2x2+2x⋅1-7x-7⋅1=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+2x2+2x⋅1-7x-7⋅1=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.6.1.2
Multiply 2 by 1.
x2-8x+12+2x2+2x-7x-7⋅1=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.6.1.3
Multiply -7 by 1.
x2-8x+12+2x2+2x-7x-7=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+2x2+2x-7x-7=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.1.6.2
Subtract 7x from 2x.
x2-8x+12+2x2-5x-7=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+2x2-5x-7=x-3(x-6)(x+1)((x+1)(x-6))
x2-8x+12+2x2-5x-7=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.2
Simplify by adding terms.
Step 3.2.2.1
Add x2 and 2x2.
3x2-8x+12-5x-7=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.2.2
Subtract 5x from -8x.
3x2-13x+12-7=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.2.2.3
Subtract 7 from 12.
3x2-13x+5=x-3(x-6)(x+1)((x+1)(x-6))
3x2-13x+5=x-3(x-6)(x+1)((x+1)(x-6))
3x2-13x+5=x-3(x-6)(x+1)((x+1)(x-6))
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of (x+1)(x-6).
Step 3.3.1.1
Factor (x+1)(x-6) out of (x-6)(x+1).
3x2-13x+5=x-3(x+1)(x-6)(1)((x+1)(x-6))
Step 3.3.1.2
Cancel the common factor.
3x2-13x+5=x-3(x+1)(x-6)⋅1((x+1)(x-6))
Step 3.3.1.3
Rewrite the expression.
3x2-13x+5=x-3
3x2-13x+5=x-3
3x2-13x+5=x-3
3x2-13x+5=x-3
Step 4
Step 4.1
Move all terms containing x to the left side of the equation.
Step 4.1.1
Subtract x from both sides of the equation.
3x2-13x+5-x=-3
Step 4.1.2
Subtract x from -13x.
3x2-14x+5=-3
3x2-14x+5=-3
Step 4.2
Add 3 to both sides of the equation.
3x2-14x+5+3=0
Step 4.3
Add 5 and 3.
3x2-14x+8=0
Step 4.4
Factor by grouping.
Step 4.4.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=3⋅8=24 and whose sum is b=-14.
Step 4.4.1.1
Factor -14 out of -14x.
3x2-14x+8=0
Step 4.4.1.2
Rewrite -14 as -2 plus -12
3x2+(-2-12)x+8=0
Step 4.4.1.3
Apply the distributive property.
3x2-2x-12x+8=0
3x2-2x-12x+8=0
Step 4.4.2
Factor out the greatest common factor from each group.
Step 4.4.2.1
Group the first two terms and the last two terms.
(3x2-2x)-12x+8=0
Step 4.4.2.2
Factor out the greatest common factor (GCF) from each group.
x(3x-2)-4(3x-2)=0
x(3x-2)-4(3x-2)=0
Step 4.4.3
Factor the polynomial by factoring out the greatest common factor, 3x-2.
(3x-2)(x-4)=0
(3x-2)(x-4)=0
Step 4.5
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
3x-2=0
x-4=0
Step 4.6
Set 3x-2 equal to 0 and solve for x.
Step 4.6.1
Set 3x-2 equal to 0.
3x-2=0
Step 4.6.2
Solve 3x-2=0 for x.
Step 4.6.2.1
Add 2 to both sides of the equation.
3x=2
Step 4.6.2.2
Divide each term in 3x=2 by 3 and simplify.
Step 4.6.2.2.1
Divide each term in 3x=2 by 3.
3x3=23
Step 4.6.2.2.2
Simplify the left side.
Step 4.6.2.2.2.1
Cancel the common factor of 3.
Step 4.6.2.2.2.1.1
Cancel the common factor.
3x3=23
Step 4.6.2.2.2.1.2
Divide x by 1.
x=23
x=23
x=23
x=23
x=23
x=23
Step 4.7
Set x-4 equal to 0 and solve for x.
Step 4.7.1
Set x-4 equal to 0.
x-4=0
Step 4.7.2
Add 4 to both sides of the equation.
x=4
x=4
Step 4.8
The final solution is all the values that make (3x-2)(x-4)=0 true.
x=23,4
x=23,4
Step 5
The result can be shown in multiple forms.
Exact Form:
x=23,4
Decimal Form:
x=0.‾6,4