Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Factor out of .
Step 1.1.1
Factor out of .
Step 1.1.2
Factor out of .
Step 1.1.3
Factor out of .
Step 1.2
Rewrite as .
Step 1.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
Since has no factors besides and .
is a prime number
Step 2.4
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.5
Since has no factors besides and .
is a prime number
Step 2.6
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.7
The factor for is itself.
occurs time.
Step 2.8
The factor for is itself.
occurs time.
Step 2.9
The factor for is itself.
occurs time.
Step 2.10
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 2.11
The Least Common Multiple of some numbers is the smallest number that the numbers are factors of.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.1.2
Cancel the common factor of .
Step 3.2.1.2.1
Cancel the common factor.
Step 3.2.1.2.2
Rewrite the expression.
Step 3.2.1.3
Cancel the common factor of .
Step 3.2.1.3.1
Cancel the common factor.
Step 3.2.1.3.2
Rewrite the expression.
Step 3.2.1.4
Apply the distributive property.
Step 3.2.1.5
Multiply by .
Step 3.2.1.6
Move to the left of .
Step 3.2.1.7
Rewrite using the commutative property of multiplication.
Step 3.2.1.8
Multiply .
Step 3.2.1.8.1
Combine and .
Step 3.2.1.8.2
Multiply by .
Step 3.2.1.9
Cancel the common factor of .
Step 3.2.1.9.1
Factor out of .
Step 3.2.1.9.2
Cancel the common factor.
Step 3.2.1.9.3
Rewrite the expression.
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Factor out of .
Step 3.3.1.2
Cancel the common factor.
Step 3.3.1.3
Rewrite the expression.
Step 3.3.2
Expand using the FOIL Method.
Step 3.3.2.1
Apply the distributive property.
Step 3.3.2.2
Apply the distributive property.
Step 3.3.2.3
Apply the distributive property.
Step 3.3.3
Simplify terms.
Step 3.3.3.1
Combine the opposite terms in .
Step 3.3.3.1.1
Reorder the factors in the terms and .
Step 3.3.3.1.2
Subtract from .
Step 3.3.3.1.3
Add and .
Step 3.3.3.2
Simplify each term.
Step 3.3.3.2.1
Multiply by .
Step 3.3.3.2.2
Multiply by .
Step 4
Step 4.1
Move all terms containing to the left side of the equation.
Step 4.1.1
Subtract from both sides of the equation.
Step 4.1.2
Combine the opposite terms in .
Step 4.1.2.1
Subtract from .
Step 4.1.2.2
Add and .
Step 4.2
Move all terms not containing to the right side of the equation.
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Subtract from .
Step 4.3
Divide each term in by and simplify.
Step 4.3.1
Divide each term in by .
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of .
Step 4.3.2.1.1
Cancel the common factor.
Step 4.3.2.1.2
Divide by .
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Divide by .