Enter a problem...
Precalculus Examples
Step 1
Square both sides of the equation.
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite as .
Step 2.1.2
Expand using the FOIL Method.
Step 2.1.2.1
Apply the distributive property.
Step 2.1.2.2
Apply the distributive property.
Step 2.1.2.3
Apply the distributive property.
Step 2.1.3
Simplify and combine like terms.
Step 2.1.3.1
Simplify each term.
Step 2.1.3.1.1
Multiply .
Step 2.1.3.1.1.1
Multiply by .
Step 2.1.3.1.1.2
Raise to the power of .
Step 2.1.3.1.1.3
Raise to the power of .
Step 2.1.3.1.1.4
Use the power rule to combine exponents.
Step 2.1.3.1.1.5
Add and .
Step 2.1.3.1.2
Multiply by .
Step 2.1.3.1.3
Multiply by .
Step 2.1.3.1.4
Multiply .
Step 2.1.3.1.4.1
Multiply by .
Step 2.1.3.1.4.2
Raise to the power of .
Step 2.1.3.1.4.3
Raise to the power of .
Step 2.1.3.1.4.4
Use the power rule to combine exponents.
Step 2.1.3.1.4.5
Add and .
Step 2.1.3.2
Reorder the factors of .
Step 2.1.3.3
Subtract from .
Step 2.1.4
Rewrite as .
Step 2.1.5
Expand using the FOIL Method.
Step 2.1.5.1
Apply the distributive property.
Step 2.1.5.2
Apply the distributive property.
Step 2.1.5.3
Apply the distributive property.
Step 2.1.6
Simplify and combine like terms.
Step 2.1.6.1
Simplify each term.
Step 2.1.6.1.1
Multiply .
Step 2.1.6.1.1.1
Multiply by .
Step 2.1.6.1.1.2
Raise to the power of .
Step 2.1.6.1.1.3
Raise to the power of .
Step 2.1.6.1.1.4
Use the power rule to combine exponents.
Step 2.1.6.1.1.5
Add and .
Step 2.1.6.1.2
Multiply by .
Step 2.1.6.1.3
Multiply by .
Step 2.1.6.1.4
Multiply .
Step 2.1.6.1.4.1
Multiply by .
Step 2.1.6.1.4.2
Raise to the power of .
Step 2.1.6.1.4.3
Raise to the power of .
Step 2.1.6.1.4.4
Use the power rule to combine exponents.
Step 2.1.6.1.4.5
Add and .
Step 2.1.6.2
Reorder the factors of .
Step 2.1.6.3
Add and .
Step 2.2
Simplify terms.
Step 2.2.1
Combine the opposite terms in .
Step 2.2.1.1
Add and .
Step 2.2.1.2
Add and .
Step 2.2.2
Move .
Step 2.2.3
Factor out of .
Step 2.2.4
Factor out of .
Step 2.2.5
Factor out of .
Step 2.3
Rearrange terms.
Step 2.4
Apply pythagorean identity.
Step 2.5
Simplify with factoring out.
Step 2.5.1
Factor out of .
Step 2.5.2
Factor out of .
Step 2.5.3
Factor out of .
Step 2.6
Apply pythagorean identity.
Step 2.7
Simplify terms.
Step 2.7.1
Simplify each term.
Step 2.7.1.1
Multiply by .
Step 2.7.1.2
Multiply by .
Step 2.7.2
Simplify the expression.
Step 2.7.2.1
Add and .
Step 2.7.2.2
Raise to the power of .
Step 3
Raise to the power of .
Step 4
Since , the equation will always be true for any value of .
All real numbers
Step 5
The result can be shown in multiple forms.
All real numbers
Interval Notation: