Enter a problem...
Precalculus Examples
log0.5((3x+1)13)=-2log0.5((3x+1)13)=−2
Step 1
Rewrite log0.5((3x+1)13)=-2log0.5((3x+1)13)=−2 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
0.5-2=(3x+1)130.5−2=(3x+1)13
Step 2
Step 2.1
Rewrite the equation as (3x+1)13=0.5-2(3x+1)13=0.5−2.
(3x+1)13=0.5-2(3x+1)13=0.5−2
Step 2.2
Raise each side of the equation to the power of 33 to eliminate the fractional exponent on the left side.
((3x+1)13)3=(0.5-2)3((3x+1)13)3=(0.5−2)3
Step 2.3
Simplify the exponent.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Simplify ((3x+1)13)3((3x+1)13)3.
Step 2.3.1.1.1
Multiply the exponents in ((3x+1)13)3((3x+1)13)3.
Step 2.3.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(3x+1)13⋅3=(0.5-2)3(3x+1)13⋅3=(0.5−2)3
Step 2.3.1.1.1.2
Cancel the common factor of 33.
Step 2.3.1.1.1.2.1
Cancel the common factor.
(3x+1)13⋅3=(0.5-2)3
Step 2.3.1.1.1.2.2
Rewrite the expression.
(3x+1)1=(0.5-2)3
(3x+1)1=(0.5-2)3
(3x+1)1=(0.5-2)3
Step 2.3.1.1.2
Simplify.
3x+1=(0.5-2)3
3x+1=(0.5-2)3
3x+1=(0.5-2)3
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify (0.5-2)3.
Step 2.3.2.1.1
Multiply the exponents in (0.5-2)3.
Step 2.3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
3x+1=0.5-2⋅3
Step 2.3.2.1.1.2
Multiply -2 by 3.
3x+1=0.5-6
3x+1=0.5-6
Step 2.3.2.1.2
Rewrite the expression using the negative exponent rule b-n=1bn.
3x+1=10.56
Step 2.3.2.1.3
Raise 0.5 to the power of 6.
3x+1=10.015625
Step 2.3.2.1.4
Divide 1 by 0.015625.
3x+1=64
3x+1=64
3x+1=64
3x+1=64
Step 2.4
Solve for x.
Step 2.4.1
Move all terms not containing x to the right side of the equation.
Step 2.4.1.1
Subtract 1 from both sides of the equation.
3x=64-1
Step 2.4.1.2
Subtract 1 from 64.
3x=63
3x=63
Step 2.4.2
Divide each term in 3x=63 by 3 and simplify.
Step 2.4.2.1
Divide each term in 3x=63 by 3.
3x3=633
Step 2.4.2.2
Simplify the left side.
Step 2.4.2.2.1
Cancel the common factor of 3.
Step 2.4.2.2.1.1
Cancel the common factor.
3x3=633
Step 2.4.2.2.1.2
Divide x by 1.
x=633
x=633
x=633
Step 2.4.2.3
Simplify the right side.
Step 2.4.2.3.1
Divide 63 by 3.
x=21
x=21
x=21
x=21
x=21