Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Rewrite as .
Step 1.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 1.4
Simplify.
Step 1.4.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.4.2
Simplify.
Step 1.4.2.1
Add and .
Step 1.4.2.2
Subtract from .
Step 1.4.2.3
Add and .
Step 1.4.3
Multiply the exponents in .
Step 1.4.3.1
Apply the power rule and multiply exponents, .
Step 1.4.3.2
Multiply by .
Step 1.4.4
Use the Binomial Theorem.
Step 1.4.5
Rewrite as .
Step 1.4.6
Expand using the FOIL Method.
Step 1.4.6.1
Apply the distributive property.
Step 1.4.6.2
Apply the distributive property.
Step 1.4.6.3
Apply the distributive property.
Step 1.4.7
Simplify and combine like terms.
Step 1.4.7.1
Simplify each term.
Step 1.4.7.1.1
Multiply by .
Step 1.4.7.1.2
Multiply by .
Step 1.4.7.2
Add and .
Step 1.4.7.2.1
Reorder and .
Step 1.4.7.2.2
Add and .
Step 1.4.8
Apply the distributive property.
Step 1.4.9
Simplify.
Step 1.4.9.1
Multiply by by adding the exponents.
Step 1.4.9.1.1
Use the power rule to combine exponents.
Step 1.4.9.1.2
Add and .
Step 1.4.9.2
Multiply by by adding the exponents.
Step 1.4.9.2.1
Move .
Step 1.4.9.2.2
Multiply by .
Step 1.4.9.2.2.1
Raise to the power of .
Step 1.4.9.2.2.2
Use the power rule to combine exponents.
Step 1.4.9.2.3
Add and .
Step 1.4.10
Multiply the exponents in .
Step 1.4.10.1
Apply the power rule and multiply exponents, .
Step 1.4.10.2
Multiply by .
Step 1.4.11
Add and .
Step 1.4.12
Add and .
Step 1.4.13
Add and .
Step 1.4.13.1
Move .
Step 1.4.13.2
Add and .
Step 1.4.14
Add and .
Step 1.4.14.1
Move .
Step 1.4.14.2
Add and .
Step 2
Step 2.1
Cancel the common factor.
Step 2.2
Divide by .
Step 3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4
Step 4.1
Rewrite using the commutative property of multiplication.
Step 4.2
Rewrite using the commutative property of multiplication.
Step 4.3
Multiply by by adding the exponents.
Step 4.3.1
Move .
Step 4.3.2
Multiply by .
Step 4.3.2.1
Raise to the power of .
Step 4.3.2.2
Use the power rule to combine exponents.
Step 4.3.3
Add and .
Step 4.4
Multiply by by adding the exponents.
Step 4.4.1
Multiply by .
Step 4.4.1.1
Raise to the power of .
Step 4.4.1.2
Use the power rule to combine exponents.
Step 4.4.2
Add and .
Step 4.5
Rewrite using the commutative property of multiplication.
Step 4.6
Multiply by by adding the exponents.
Step 4.6.1
Move .
Step 4.6.2
Multiply by .
Step 4.7
Rewrite using the commutative property of multiplication.
Step 4.8
Multiply by by adding the exponents.
Step 4.8.1
Move .
Step 4.8.2
Multiply by .
Step 4.8.2.1
Raise to the power of .
Step 4.8.2.2
Use the power rule to combine exponents.
Step 4.8.3
Add and .
Step 4.9
Rewrite using the commutative property of multiplication.
Step 4.10
Multiply by by adding the exponents.
Step 4.10.1
Move .
Step 4.10.2
Multiply by .
Step 4.10.2.1
Raise to the power of .
Step 4.10.2.2
Use the power rule to combine exponents.
Step 4.10.3
Add and .
Step 4.11
Multiply by .
Step 4.12
Multiply by by adding the exponents.
Step 4.12.1
Move .
Step 4.12.2
Multiply by .
Step 4.13
Rewrite using the commutative property of multiplication.
Step 4.14
Multiply by .
Step 4.15
Multiply by by adding the exponents.
Step 4.15.1
Move .
Step 4.15.2
Multiply by .
Step 4.15.2.1
Raise to the power of .
Step 4.15.2.2
Use the power rule to combine exponents.
Step 4.15.3
Add and .
Step 4.16
Rewrite using the commutative property of multiplication.
Step 4.17
Multiply by .
Step 4.18
Multiply by by adding the exponents.
Step 4.18.1
Move .
Step 4.18.2
Multiply by .
Step 4.18.2.1
Raise to the power of .
Step 4.18.2.2
Use the power rule to combine exponents.
Step 4.18.3
Add and .
Step 4.19
Rewrite using the commutative property of multiplication.
Step 4.20
Multiply by .
Step 5
Step 5.1
Move .
Step 5.2
Add and .
Step 6
Step 6.1
Move .
Step 6.2
Add and .
Step 7
Step 7.1
Move .
Step 7.2
Add and .
Step 8
Step 8.1
Move .
Step 8.2
Add and .