Precalculus Examples

Solve for z cos(z)=0
cos(z)=0
Step 1
Take the inverse cosine of both sides of the equation to extract z from inside the cosine.
z=arccos(0)
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
The exact value of arccos(0) is π2.
z=π2
z=π2
Step 3
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the fourth quadrant.
z=2π-π2
Step 4
Simplify 2π-π2.
Tap for more steps...
Step 4.1
To write 2π as a fraction with a common denominator, multiply by 22.
z=2π22-π2
Step 4.2
Combine fractions.
Tap for more steps...
Step 4.2.1
Combine 2π and 22.
z=2π22-π2
Step 4.2.2
Combine the numerators over the common denominator.
z=2π2-π2
z=2π2-π2
Step 4.3
Simplify the numerator.
Tap for more steps...
Step 4.3.1
Multiply 2 by 2.
z=4π-π2
Step 4.3.2
Subtract π from 4π.
z=3π2
z=3π2
z=3π2
Step 5
Find the period of cos(z).
Tap for more steps...
Step 5.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 5.2
Replace b with 1 in the formula for period.
2π|1|
Step 5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 5.4
Divide 2π by 1.
2π
2π
Step 6
The period of the cos(z) function is 2π so values will repeat every 2π radians in both directions.
z=π2+2πn,3π2+2πn, for any integer n
Step 7
Consolidate the answers.
z=π2+πn, for any integer n
 [x2  12  π  xdx ]