Enter a problem...
Precalculus Examples
Step 1
Apply the distributive property.
Step 2
Step 2.1
Multiply by .
Step 2.1.1
Raise to the power of .
Step 2.1.2
Use the power rule to combine exponents.
Step 2.2
Add and .
Step 3
Move to the left of .
Step 4
Step 4.1
Apply the distributive property.
Step 4.2
Apply the distributive property.
Step 4.3
Apply the distributive property.
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply by by adding the exponents.
Step 5.1.1.1
Multiply by .
Step 5.1.1.1.1
Raise to the power of .
Step 5.1.1.1.2
Use the power rule to combine exponents.
Step 5.1.1.2
Add and .
Step 5.1.2
Move to the left of .
Step 5.1.3
Multiply by by adding the exponents.
Step 5.1.3.1
Move .
Step 5.1.3.2
Multiply by .
Step 5.1.3.2.1
Raise to the power of .
Step 5.1.3.2.2
Use the power rule to combine exponents.
Step 5.1.3.3
Add and .
Step 5.1.4
Multiply by .
Step 5.2
Subtract from .
Step 5.3
Add and .
Step 6
Step 6.1
Factor out of .
Step 6.1.1
Factor out of .
Step 6.1.2
Factor out of .
Step 6.1.3
Factor out of .
Step 6.2
Rewrite as .
Step 6.3
Factor.
Step 6.3.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.3.2
Remove unnecessary parentheses.
Step 6.4
Factor out of .
Step 6.4.1
Factor out of .
Step 6.4.2
Factor out of .
Step 6.4.3
Factor out of .
Step 6.5
Factor out of .
Step 6.5.1
Factor out of .
Step 6.5.2
Factor out of .
Step 6.5.3
Factor out of .
Step 6.6
Apply the distributive property.
Step 6.7
Multiply by by adding the exponents.
Step 6.7.1
Multiply by .
Step 6.7.1.1
Raise to the power of .
Step 6.7.1.2
Use the power rule to combine exponents.
Step 6.7.2
Add and .
Step 6.8
Move to the left of .
Step 6.9
Factor.
Step 6.9.1
Factor using the rational roots test.
Step 6.9.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 6.9.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 6.9.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 6.9.1.3.1
Substitute into the polynomial.
Step 6.9.1.3.2
Raise to the power of .
Step 6.9.1.3.3
Raise to the power of .
Step 6.9.1.3.4
Multiply by .
Step 6.9.1.3.5
Subtract from .
Step 6.9.1.3.6
Add and .
Step 6.9.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 6.9.1.5
Divide by .
Step 6.9.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | + |
Step 6.9.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | + | + |
Step 6.9.1.5.3
Multiply the new quotient term by the divisor.
+ | - | + | + | ||||||||
+ | + |
Step 6.9.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | + | + | ||||||||
- | - |
Step 6.9.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | + | + | ||||||||
- | - | ||||||||||
- |
Step 6.9.1.5.6
Pull the next terms from the original dividend down into the current dividend.
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Step 6.9.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Step 6.9.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Step 6.9.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Step 6.9.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Step 6.9.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 6.9.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 6.9.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 6.9.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Step 6.9.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Step 6.9.1.5.16
Since the remander is , the final answer is the quotient.
Step 6.9.1.6
Write as a set of factors.
Step 6.9.2
Remove unnecessary parentheses.