Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from .
Step 2
Subtract from both sides of the equation.
Step 3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4
Step 4.1
Simplify .
Step 4.1.1
Apply the product rule to .
Step 4.1.2
Rewrite as .
Step 4.1.3
Raise to the power of .
Step 4.1.4
Rewrite as .
Step 4.1.5
Multiply the exponents in .
Step 4.1.5.1
Apply the power rule and multiply exponents, .
Step 4.1.5.2
Cancel the common factor of .
Step 4.1.5.2.1
Cancel the common factor.
Step 4.1.5.2.2
Rewrite the expression.
Step 4.1.5.3
Cancel the common factor of .
Step 4.1.5.3.1
Cancel the common factor.
Step 4.1.5.3.2
Rewrite the expression.
Step 4.1.6
Simplify.
Step 4.1.7
Apply the distributive property.
Step 4.1.8
Simplify the expression.
Step 4.1.8.1
Move to the left of .
Step 4.1.8.2
Reorder factors in .
Step 5
Step 5.1
First, use the positive value of the to find the first solution.
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of .
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Rewrite the expression.
Step 5.3.2.2
Cancel the common factor of .
Step 5.3.2.2.1
Cancel the common factor.
Step 5.3.2.2.2
Divide by .
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Simplify each term.
Step 5.3.3.1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 5.3.3.1.2
Multiply.
Step 5.3.3.1.2.1
Combine.
Step 5.3.3.1.2.2
Reorder factors in .
Step 5.3.3.1.2.3
Simplify the denominator.
Step 5.3.3.1.2.3.1
Add parentheses.
Step 5.3.3.1.2.3.2
Raise to the power of .
Step 5.3.3.1.2.3.3
Raise to the power of .
Step 5.3.3.1.2.3.4
Use the power rule to combine exponents.
Step 5.3.3.1.2.3.5
Add and .
Step 5.3.3.1.2.3.6
Rewrite as .
Step 5.3.3.1.3
Multiply by .
Step 5.3.3.1.4
Cancel the common factor of and .
Step 5.3.3.1.4.1
Factor out of .
Step 5.3.3.1.4.2
Cancel the common factors.
Step 5.3.3.1.4.2.1
Factor out of .
Step 5.3.3.1.4.2.2
Cancel the common factor.
Step 5.3.3.1.4.2.3
Rewrite the expression.
Step 5.3.3.1.5
Cancel the common factor of .
Step 5.3.3.1.5.1
Cancel the common factor.
Step 5.3.3.1.5.2
Divide by .
Step 5.3.3.2
Reorder and .
Step 5.4
Next, use the negative value of the to find the second solution.
Step 5.5
Subtract from both sides of the equation.
Step 5.6
Divide each term in by and simplify.
Step 5.6.1
Divide each term in by .
Step 5.6.2
Simplify the left side.
Step 5.6.2.1
Cancel the common factor of .
Step 5.6.2.1.1
Cancel the common factor.
Step 5.6.2.1.2
Rewrite the expression.
Step 5.6.2.2
Cancel the common factor of .
Step 5.6.2.2.1
Cancel the common factor.
Step 5.6.2.2.2
Divide by .
Step 5.6.3
Simplify the right side.
Step 5.6.3.1
Simplify each term.
Step 5.6.3.1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 5.6.3.1.2
Multiply.
Step 5.6.3.1.2.1
Combine.
Step 5.6.3.1.2.2
Reorder factors in .
Step 5.6.3.1.2.3
Simplify the denominator.
Step 5.6.3.1.2.3.1
Add parentheses.
Step 5.6.3.1.2.3.2
Raise to the power of .
Step 5.6.3.1.2.3.3
Raise to the power of .
Step 5.6.3.1.2.3.4
Use the power rule to combine exponents.
Step 5.6.3.1.2.3.5
Add and .
Step 5.6.3.1.2.3.6
Rewrite as .
Step 5.6.3.1.3
Dividing two negative values results in a positive value.
Step 5.6.3.1.4
Move the negative in front of the fraction.
Step 5.6.3.1.5
Cancel the common factor of and .
Step 5.6.3.1.5.1
Factor out of .
Step 5.6.3.1.5.2
Cancel the common factors.
Step 5.6.3.1.5.2.1
Factor out of .
Step 5.6.3.1.5.2.2
Cancel the common factor.
Step 5.6.3.1.5.2.3
Rewrite the expression.
Step 5.6.3.1.6
Cancel the common factor of .
Step 5.6.3.1.6.1
Cancel the common factor.
Step 5.6.3.1.6.2
Divide by .
Step 5.6.3.2
Reorder and .
Step 5.7
The complete solution is the result of both the positive and negative portions of the solution.