Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Apply the distributive property.
Step 1.2
Apply the distributive property.
Step 1.3
Apply the distributive property.
Step 1.4
Apply the distributive property.
Step 1.5
Reorder and .
Step 1.6
Reorder and .
Step 1.7
Move .
Step 1.8
Move .
Step 1.9
Reorder and .
Step 1.10
Raise to the power of .
Step 1.11
Use the power rule to combine exponents.
Step 1.12
Add and .
Step 1.13
Multiply by .
Step 1.14
Raise to the power of .
Step 1.15
Use the power rule to combine exponents.
Step 1.16
Add and .
Step 1.17
Raise to the power of .
Step 1.18
Use the power rule to combine exponents.
Step 1.19
Add and .
Step 1.20
Raise to the power of .
Step 1.21
Use the power rule to combine exponents.
Step 1.22
Add and .
Step 1.23
Move .
Step 1.24
Reorder and .
Step 1.25
Subtract from .
Step 2
Step 2.1
Apply the distributive property.
Step 2.2
Apply the distributive property.
Step 2.3
Apply the distributive property.
Step 2.4
Reorder and .
Step 2.5
Raise to the power of .
Step 2.6
Raise to the power of .
Step 2.7
Use the power rule to combine exponents.
Step 2.8
Add and .
Step 2.9
Multiply by .
Step 2.10
Add and .
Step 3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | - | - | + | + |
Step 4
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | - | - | + | + |
Step 5
Multiply the new quotient term by the divisor.
+ | - | - | - | + | + | ||||||||||
+ | + | - |
Step 6
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | - | - | + | + | ||||||||||
- | - | + |
Step 7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - |
Step 8
Pull the next terms from the original dividend down into the current dividend.
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + |
Step 9
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + |
Step 10
Multiply the new quotient term by the divisor.
- | |||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
- | - | + |
Step 11
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - |
Step 12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
- | - |
Step 13
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
- | - | + |
Step 14
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | ||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
- | - | + |
Step 15
Multiply the new quotient term by the divisor.
- | - | ||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
- | - | + | |||||||||||||
- | - | + |
Step 16
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | ||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
- | - | + | |||||||||||||
+ | + | - |
Step 17
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | ||||||||||||||
+ | - | - | - | + | + | ||||||||||
- | - | + | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
- | - | + | |||||||||||||
+ | + | - | |||||||||||||
+ | - |
Step 18
The final answer is the quotient plus the remainder over the divisor.