Precalculus Examples

Solve by Completing the Square 5p^2+20p+25=10
Step 1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from .
Step 2
Divide each term in by and simplify.
Tap for more steps...
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1.1
Cancel the common factor.
Step 2.2.1.1.2
Divide by .
Step 2.2.1.2
Cancel the common factor of and .
Tap for more steps...
Step 2.2.1.2.1
Factor out of .
Step 2.2.1.2.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1.2.2.1
Factor out of .
Step 2.2.1.2.2.2
Cancel the common factor.
Step 2.2.1.2.2.3
Rewrite the expression.
Step 2.2.1.2.2.4
Divide by .
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Divide by .
Step 3
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of .
Step 4
Add the term to each side of the equation.
Step 5
Simplify the equation.
Tap for more steps...
Step 5.1
Simplify the left side.
Tap for more steps...
Step 5.1.1
Raise to the power of .
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
Simplify .
Tap for more steps...
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Add and .
Step 6
Factor the perfect trinomial square into .
Step 7
Solve the equation for .
Tap for more steps...
Step 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.2
Any root of is .
Step 7.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 7.3.1
First, use the positive value of the to find the first solution.
Step 7.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 7.3.2.1
Subtract from both sides of the equation.
Step 7.3.2.2
Subtract from .
Step 7.3.3
Next, use the negative value of the to find the second solution.
Step 7.3.4
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 7.3.4.1
Subtract from both sides of the equation.
Step 7.3.4.2
Subtract from .
Step 7.3.5
The complete solution is the result of both the positive and negative portions of the solution.