Precalculus Examples

Find the Roots (Zeros) f(x)=x(x+2)(x-2)(3x^2-4)
Step 1
Set equal to .
Step 2
Solve for .
Tap for more steps...
Step 2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2
Set equal to .
Step 2.3
Set equal to and solve for .
Tap for more steps...
Step 2.3.1
Set equal to .
Step 2.3.2
Subtract from both sides of the equation.
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Add to both sides of the equation.
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Tap for more steps...
Step 2.5.2.1
Add to both sides of the equation.
Step 2.5.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.2.2.1
Divide each term in by .
Step 2.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.5.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.5.2.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.2.1.2
Divide by .
Step 2.5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.5.2.4
Simplify .
Tap for more steps...
Step 2.5.2.4.1
Rewrite as .
Step 2.5.2.4.2
Simplify the numerator.
Tap for more steps...
Step 2.5.2.4.2.1
Rewrite as .
Step 2.5.2.4.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.5.2.4.3
Multiply by .
Step 2.5.2.4.4
Combine and simplify the denominator.
Tap for more steps...
Step 2.5.2.4.4.1
Multiply by .
Step 2.5.2.4.4.2
Raise to the power of .
Step 2.5.2.4.4.3
Raise to the power of .
Step 2.5.2.4.4.4
Use the power rule to combine exponents.
Step 2.5.2.4.4.5
Add and .
Step 2.5.2.4.4.6
Rewrite as .
Tap for more steps...
Step 2.5.2.4.4.6.1
Use to rewrite as .
Step 2.5.2.4.4.6.2
Apply the power rule and multiply exponents, .
Step 2.5.2.4.4.6.3
Combine and .
Step 2.5.2.4.4.6.4
Cancel the common factor of .
Tap for more steps...
Step 2.5.2.4.4.6.4.1
Cancel the common factor.
Step 2.5.2.4.4.6.4.2
Rewrite the expression.
Step 2.5.2.4.4.6.5
Evaluate the exponent.
Step 2.5.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.5.2.5.1
First, use the positive value of the to find the first solution.
Step 2.5.2.5.2
Next, use the negative value of the to find the second solution.
Step 2.5.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.6
The final solution is all the values that make true.
Step 3
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 4