Enter a problem...
Precalculus Examples
Step 1
Set equal to .
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Combine and .
Step 2.1.2
Move to the left of .
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.2.4
Factor out of .
Step 2.2.5
Factor out of .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Multiply through by the least common denominator , then simplify.
Step 2.5.2.1.1
Apply the distributive property.
Step 2.5.2.1.2
Simplify.
Step 2.5.2.1.2.1
Multiply by .
Step 2.5.2.1.2.2
Multiply by .
Step 2.5.2.1.2.3
Cancel the common factor of .
Step 2.5.2.1.2.3.1
Cancel the common factor.
Step 2.5.2.1.2.3.2
Rewrite the expression.
Step 2.5.2.2
Use the quadratic formula to find the solutions.
Step 2.5.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 2.5.2.4
Simplify.
Step 2.5.2.4.1
Simplify the numerator.
Step 2.5.2.4.1.1
Raise to the power of .
Step 2.5.2.4.1.2
Multiply .
Step 2.5.2.4.1.2.1
Multiply by .
Step 2.5.2.4.1.2.2
Multiply by .
Step 2.5.2.4.1.3
Subtract from .
Step 2.5.2.4.1.4
Rewrite as .
Step 2.5.2.4.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 2.5.2.4.1.6
plus or minus is .
Step 2.5.2.4.2
Multiply by .
Step 2.5.2.4.3
Cancel the common factor of and .
Step 2.5.2.4.3.1
Factor out of .
Step 2.5.2.4.3.2
Cancel the common factors.
Step 2.5.2.4.3.2.1
Factor out of .
Step 2.5.2.4.3.2.2
Cancel the common factor.
Step 2.5.2.4.3.2.3
Rewrite the expression.
Step 2.5.2.5
The final answer is the combination of both solutions.
Double roots
Double roots
Double roots
Step 2.6
The final solution is all the values that make true.
Step 3