Enter a problem...
Precalculus Examples
Step 1
Find a common factor that is present in each term.
Step 2
Substitute for .
Step 3
Step 3.1
Multiply by .
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Step 3.4.1
Simplify the numerator.
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply .
Step 3.4.1.2.1
Multiply by .
Step 3.4.1.2.2
Multiply by .
Step 3.4.1.3
Add and .
Step 3.4.2
Multiply by .
Step 3.5
Simplify the expression to solve for the portion of the .
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Add and .
Step 3.5.2
Multiply by .
Step 3.5.3
Change the to .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Add and .
Step 3.6.2
Multiply by .
Step 3.6.3
Change the to .
Step 3.7
The final answer is the combination of both solutions.
Step 4
Substitute for .
Step 5
Step 5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 5.2
Simplify the exponent.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Multiply the exponents in .
Step 5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 5.2.1.1.1.2
Cancel the common factor of .
Step 5.2.1.1.1.2.1
Cancel the common factor.
Step 5.2.1.1.1.2.2
Rewrite the expression.
Step 5.2.1.1.2
Simplify.
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Simplify .
Step 5.2.2.1.1
Simplify the expression.
Step 5.2.2.1.1.1
Apply the product rule to .
Step 5.2.2.1.1.2
Raise to the power of .
Step 5.2.2.1.2
Use the Binomial Theorem.
Step 5.2.2.1.3
Simplify terms.
Step 5.2.2.1.3.1
Simplify each term.
Step 5.2.2.1.3.1.1
One to any power is one.
Step 5.2.2.1.3.1.2
One to any power is one.
Step 5.2.2.1.3.1.3
Multiply by .
Step 5.2.2.1.3.1.4
Multiply by .
Step 5.2.2.1.3.1.5
Rewrite as .
Step 5.2.2.1.3.1.5.1
Use to rewrite as .
Step 5.2.2.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 5.2.2.1.3.1.5.3
Combine and .
Step 5.2.2.1.3.1.5.4
Cancel the common factor of .
Step 5.2.2.1.3.1.5.4.1
Cancel the common factor.
Step 5.2.2.1.3.1.5.4.2
Rewrite the expression.
Step 5.2.2.1.3.1.5.5
Evaluate the exponent.
Step 5.2.2.1.3.1.6
Multiply by .
Step 5.2.2.1.3.1.7
Rewrite as .
Step 5.2.2.1.3.1.8
Raise to the power of .
Step 5.2.2.1.3.1.9
Rewrite as .
Step 5.2.2.1.3.1.9.1
Factor out of .
Step 5.2.2.1.3.1.9.2
Rewrite as .
Step 5.2.2.1.3.1.10
Pull terms out from under the radical.
Step 5.2.2.1.3.2
Simplify terms.
Step 5.2.2.1.3.2.1
Add and .
Step 5.2.2.1.3.2.2
Add and .
Step 5.2.2.1.3.2.3
Cancel the common factor of and .
Step 5.2.2.1.3.2.3.1
Factor out of .
Step 5.2.2.1.3.2.3.2
Factor out of .
Step 5.2.2.1.3.2.3.3
Factor out of .
Step 5.2.2.1.3.2.3.4
Cancel the common factors.
Step 5.2.2.1.3.2.3.4.1
Factor out of .
Step 5.2.2.1.3.2.3.4.2
Cancel the common factor.
Step 5.2.2.1.3.2.3.4.3
Rewrite the expression.
Step 6
Step 6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 6.2
Simplify the exponent.
Step 6.2.1
Simplify the left side.
Step 6.2.1.1
Simplify .
Step 6.2.1.1.1
Multiply the exponents in .
Step 6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 6.2.1.1.1.2
Cancel the common factor of .
Step 6.2.1.1.1.2.1
Cancel the common factor.
Step 6.2.1.1.1.2.2
Rewrite the expression.
Step 6.2.1.1.2
Simplify.
Step 6.2.2
Simplify the right side.
Step 6.2.2.1
Simplify .
Step 6.2.2.1.1
Simplify the expression.
Step 6.2.2.1.1.1
Apply the product rule to .
Step 6.2.2.1.1.2
Raise to the power of .
Step 6.2.2.1.2
Use the Binomial Theorem.
Step 6.2.2.1.3
Simplify terms.
Step 6.2.2.1.3.1
Simplify each term.
Step 6.2.2.1.3.1.1
One to any power is one.
Step 6.2.2.1.3.1.2
One to any power is one.
Step 6.2.2.1.3.1.3
Multiply by .
Step 6.2.2.1.3.1.4
Multiply by .
Step 6.2.2.1.3.1.5
Multiply by .
Step 6.2.2.1.3.1.6
Apply the product rule to .
Step 6.2.2.1.3.1.7
Raise to the power of .
Step 6.2.2.1.3.1.8
Multiply by .
Step 6.2.2.1.3.1.9
Rewrite as .
Step 6.2.2.1.3.1.9.1
Use to rewrite as .
Step 6.2.2.1.3.1.9.2
Apply the power rule and multiply exponents, .
Step 6.2.2.1.3.1.9.3
Combine and .
Step 6.2.2.1.3.1.9.4
Cancel the common factor of .
Step 6.2.2.1.3.1.9.4.1
Cancel the common factor.
Step 6.2.2.1.3.1.9.4.2
Rewrite the expression.
Step 6.2.2.1.3.1.9.5
Evaluate the exponent.
Step 6.2.2.1.3.1.10
Multiply by .
Step 6.2.2.1.3.1.11
Apply the product rule to .
Step 6.2.2.1.3.1.12
Raise to the power of .
Step 6.2.2.1.3.1.13
Rewrite as .
Step 6.2.2.1.3.1.14
Raise to the power of .
Step 6.2.2.1.3.1.15
Rewrite as .
Step 6.2.2.1.3.1.15.1
Factor out of .
Step 6.2.2.1.3.1.15.2
Rewrite as .
Step 6.2.2.1.3.1.16
Pull terms out from under the radical.
Step 6.2.2.1.3.1.17
Multiply by .
Step 6.2.2.1.3.2
Simplify terms.
Step 6.2.2.1.3.2.1
Add and .
Step 6.2.2.1.3.2.2
Subtract from .
Step 6.2.2.1.3.2.3
Cancel the common factor of and .
Step 6.2.2.1.3.2.3.1
Factor out of .
Step 6.2.2.1.3.2.3.2
Factor out of .
Step 6.2.2.1.3.2.3.3
Factor out of .
Step 6.2.2.1.3.2.3.4
Cancel the common factors.
Step 6.2.2.1.3.2.3.4.1
Factor out of .
Step 6.2.2.1.3.2.3.4.2
Cancel the common factor.
Step 6.2.2.1.3.2.3.4.3
Rewrite the expression.
Step 7
List all of the solutions.
Step 8
The result can be shown in multiple forms.
Exact Form:
Decimal Form: