Enter a problem...
Precalculus Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Simplify .
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Raising to any positive power yields .
Step 1.2.1.1.2
Multiply by .
Step 1.2.1.1.3
Multiply by .
Step 1.2.1.2
Combine the opposite terms in .
Step 1.2.1.2.1
Add and .
Step 1.2.1.2.2
Add and .
Step 1.2.2
Add to both sides of the equation.
Step 1.2.3
Divide each term in by and simplify.
Step 1.2.3.1
Divide each term in by .
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Cancel the common factor of .
Step 1.2.3.2.1.1
Cancel the common factor.
Step 1.2.3.2.1.2
Divide by .
Step 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.2.5
Simplify .
Step 1.2.5.1
Rewrite as .
Step 1.2.5.2
Simplify the numerator.
Step 1.2.5.2.1
Rewrite as .
Step 1.2.5.2.1.1
Factor out of .
Step 1.2.5.2.1.2
Rewrite as .
Step 1.2.5.2.2
Pull terms out from under the radical.
Step 1.2.5.3
Simplify the denominator.
Step 1.2.5.3.1
Rewrite as .
Step 1.2.5.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 1.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.6.1
First, use the positive value of the to find the first solution.
Step 1.2.6.2
Next, use the negative value of the to find the second solution.
Step 1.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Raising to any positive power yields .
Step 2.2.1.1.2
Multiply by .
Step 2.2.1.2
Add and .
Step 2.2.2
Factor the left side of the equation.
Step 2.2.2.1
Factor out of .
Step 2.2.2.1.1
Factor out of .
Step 2.2.2.1.2
Factor out of .
Step 2.2.2.1.3
Factor out of .
Step 2.2.2.1.4
Factor out of .
Step 2.2.2.1.5
Factor out of .
Step 2.2.2.2
Factor.
Step 2.2.2.2.1
Factor using the AC method.
Step 2.2.2.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.2.2.2.1.2
Write the factored form using these integers.
Step 2.2.2.2.2
Remove unnecessary parentheses.
Step 2.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.4
Set equal to and solve for .
Step 2.2.4.1
Set equal to .
Step 2.2.4.2
Add to both sides of the equation.
Step 2.2.5
Set equal to and solve for .
Step 2.2.5.1
Set equal to .
Step 2.2.5.2
Subtract from both sides of the equation.
Step 2.2.6
The final solution is all the values that make true.
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4