Enter a problem...
Precalculus Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Multiply both sides of the equation by .
Step 1.2.3
Simplify both sides of the equation.
Step 1.2.3.1
Simplify the left side.
Step 1.2.3.1.1
Simplify .
Step 1.2.3.1.1.1
Reduce the expression by cancelling the common factors.
Step 1.2.3.1.1.1.1
Cancel the common factor of and .
Step 1.2.3.1.1.1.1.1
Factor out of .
Step 1.2.3.1.1.1.1.2
Cancel the common factors.
Step 1.2.3.1.1.1.1.2.1
Factor out of .
Step 1.2.3.1.1.1.1.2.2
Cancel the common factor.
Step 1.2.3.1.1.1.1.2.3
Rewrite the expression.
Step 1.2.3.1.1.1.2
Cancel the common factor of and .
Step 1.2.3.1.1.1.2.1
Factor out of .
Step 1.2.3.1.1.1.2.2
Cancel the common factors.
Step 1.2.3.1.1.1.2.2.1
Factor out of .
Step 1.2.3.1.1.1.2.2.2
Cancel the common factor.
Step 1.2.3.1.1.1.2.2.3
Rewrite the expression.
Step 1.2.3.1.1.2
Expand using the FOIL Method.
Step 1.2.3.1.1.2.1
Apply the distributive property.
Step 1.2.3.1.1.2.2
Apply the distributive property.
Step 1.2.3.1.1.2.3
Apply the distributive property.
Step 1.2.3.1.1.3
Simplify and combine like terms.
Step 1.2.3.1.1.3.1
Simplify each term.
Step 1.2.3.1.1.3.1.1
Multiply by .
Step 1.2.3.1.1.3.1.2
Multiply by .
Step 1.2.3.1.1.3.1.3
Multiply by .
Step 1.2.3.1.1.3.2
Add and .
Step 1.2.3.1.1.4
Apply the distributive property.
Step 1.2.3.1.1.5
Apply the distributive property.
Step 1.2.3.1.1.6
Simplify.
Step 1.2.3.1.1.6.1
Multiply .
Step 1.2.3.1.1.6.1.1
Combine and .
Step 1.2.3.1.1.6.1.2
Combine and .
Step 1.2.3.1.1.6.2
Cancel the common factor of .
Step 1.2.3.1.1.6.2.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.6.2.2
Factor out of .
Step 1.2.3.1.1.6.2.3
Factor out of .
Step 1.2.3.1.1.6.2.4
Cancel the common factor.
Step 1.2.3.1.1.6.2.5
Rewrite the expression.
Step 1.2.3.1.1.6.3
Combine and .
Step 1.2.3.1.1.6.4
Multiply by .
Step 1.2.3.1.1.6.5
Combine and .
Step 1.2.3.1.1.6.6
Combine and .
Step 1.2.3.1.1.6.7
Cancel the common factor of .
Step 1.2.3.1.1.6.7.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.6.7.2
Factor out of .
Step 1.2.3.1.1.6.7.3
Factor out of .
Step 1.2.3.1.1.6.7.4
Cancel the common factor.
Step 1.2.3.1.1.6.7.5
Rewrite the expression.
Step 1.2.3.1.1.6.8
Combine and .
Step 1.2.3.1.1.7
Simplify each term.
Step 1.2.3.1.1.7.1
Move to the left of .
Step 1.2.3.1.1.7.2
Move to the left of .
Step 1.2.3.1.1.7.3
Move the negative in front of the fraction.
Step 1.2.3.1.1.7.4
Move the negative in front of the fraction.
Step 1.2.3.1.1.8
To write as a fraction with a common denominator, multiply by .
Step 1.2.3.1.1.9
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 1.2.3.1.1.9.1
Multiply by .
Step 1.2.3.1.1.9.2
Multiply by .
Step 1.2.3.1.1.10
Combine the numerators over the common denominator.
Step 1.2.3.1.1.11
Simplify the numerator.
Step 1.2.3.1.1.11.1
Factor out of .
Step 1.2.3.1.1.11.1.1
Factor out of .
Step 1.2.3.1.1.11.1.2
Factor out of .
Step 1.2.3.1.1.11.1.3
Factor out of .
Step 1.2.3.1.1.11.2
Multiply by .
Step 1.2.3.1.1.12
To write as a fraction with a common denominator, multiply by .
Step 1.2.3.1.1.13
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 1.2.3.1.1.13.1
Multiply by .
Step 1.2.3.1.1.13.2
Multiply by .
Step 1.2.3.1.1.14
Simplify terms.
Step 1.2.3.1.1.14.1
Combine the numerators over the common denominator.
Step 1.2.3.1.1.14.2
Cancel the common factor of .
Step 1.2.3.1.1.14.2.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.14.2.2
Factor out of .
Step 1.2.3.1.1.14.2.3
Cancel the common factor.
Step 1.2.3.1.1.14.2.4
Rewrite the expression.
Step 1.2.3.1.1.14.3
Simplify the expression.
Step 1.2.3.1.1.14.3.1
Multiply by .
Step 1.2.3.1.1.14.3.2
Move the negative in front of the fraction.
Step 1.2.3.1.1.15
Simplify each term.
Step 1.2.3.1.1.15.1
Apply the distributive property.
Step 1.2.3.1.1.15.2
Multiply by by adding the exponents.
Step 1.2.3.1.1.15.2.1
Move .
Step 1.2.3.1.1.15.2.2
Multiply by .
Step 1.2.3.1.1.15.3
Multiply by .
Step 1.2.3.1.1.15.4
Multiply by .
Step 1.2.3.1.1.16
Apply the distributive property.
Step 1.2.3.1.1.17
Simplify.
Step 1.2.3.1.1.17.1
Cancel the common factor of .
Step 1.2.3.1.1.17.1.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.17.1.2
Factor out of .
Step 1.2.3.1.1.17.1.3
Cancel the common factor.
Step 1.2.3.1.1.17.1.4
Rewrite the expression.
Step 1.2.3.1.1.17.2
Multiply by .
Step 1.2.3.1.1.17.3
Multiply by .
Step 1.2.3.1.1.17.4
Cancel the common factor of .
Step 1.2.3.1.1.17.4.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.17.4.2
Factor out of .
Step 1.2.3.1.1.17.4.3
Cancel the common factor.
Step 1.2.3.1.1.17.4.4
Rewrite the expression.
Step 1.2.3.1.1.17.5
Multiply by .
Step 1.2.3.1.1.17.6
Cancel the common factor of .
Step 1.2.3.1.1.17.6.1
Move the leading negative in into the numerator.
Step 1.2.3.1.1.17.6.2
Factor out of .
Step 1.2.3.1.1.17.6.3
Cancel the common factor.
Step 1.2.3.1.1.17.6.4
Rewrite the expression.
Step 1.2.3.1.1.17.7
Multiply by .
Step 1.2.3.1.1.18
Reorder factors in .
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Simplify .
Step 1.2.3.2.1.1
Cancel the common factor of and .
Step 1.2.3.2.1.1.1
Factor out of .
Step 1.2.3.2.1.1.2
Cancel the common factors.
Step 1.2.3.2.1.1.2.1
Factor out of .
Step 1.2.3.2.1.1.2.2
Cancel the common factor.
Step 1.2.3.2.1.1.2.3
Rewrite the expression.
Step 1.2.3.2.1.2
Multiply .
Step 1.2.3.2.1.2.1
Multiply by .
Step 1.2.3.2.1.2.2
Multiply by .
Step 1.2.4
Factor the left side of the equation.
Step 1.2.4.1
Factor out of .
Step 1.2.4.1.1
Factor out of .
Step 1.2.4.1.2
Factor out of .
Step 1.2.4.1.3
Factor out of .
Step 1.2.4.1.4
Factor out of .
Step 1.2.4.1.5
Factor out of .
Step 1.2.4.2
Factor.
Step 1.2.4.2.1
Factor using the AC method.
Step 1.2.4.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2.4.2.1.2
Write the factored form using these integers.
Step 1.2.4.2.2
Remove unnecessary parentheses.
Step 1.2.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.6
Set equal to and solve for .
Step 1.2.6.1
Set equal to .
Step 1.2.6.2
Solve for .
Step 1.2.6.2.1
Set the equal to .
Step 1.2.6.2.2
Add to both sides of the equation.
Step 1.2.7
Set equal to and solve for .
Step 1.2.7.1
Set equal to .
Step 1.2.7.2
Subtract from both sides of the equation.
Step 1.2.8
Set equal to and solve for .
Step 1.2.8.1
Set equal to .
Step 1.2.8.2
Subtract from both sides of the equation.
Step 1.2.9
The final solution is all the values that make true.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Remove parentheses.
Step 2.2.4
Remove parentheses.
Step 2.2.5
Remove parentheses.
Step 2.2.6
Remove parentheses.
Step 2.2.7
Simplify .
Step 2.2.7.1
Simplify terms.
Step 2.2.7.1.1
Cancel the common factor of and .
Step 2.2.7.1.1.1
Factor out of .
Step 2.2.7.1.1.2
Cancel the common factors.
Step 2.2.7.1.1.2.1
Factor out of .
Step 2.2.7.1.1.2.2
Cancel the common factor.
Step 2.2.7.1.1.2.3
Rewrite the expression.
Step 2.2.7.1.2
Add and .
Step 2.2.7.1.3
Cancel the common factor of .
Step 2.2.7.1.3.1
Move the leading negative in into the numerator.
Step 2.2.7.1.3.2
Factor out of .
Step 2.2.7.1.3.3
Factor out of .
Step 2.2.7.1.3.4
Cancel the common factor.
Step 2.2.7.1.3.5
Rewrite the expression.
Step 2.2.7.1.4
Combine and .
Step 2.2.7.2
Simplify the numerator.
Step 2.2.7.2.1
Subtract from .
Step 2.2.7.2.2
Raise to the power of .
Step 2.2.7.3
Simplify the expression.
Step 2.2.7.3.1
Multiply by .
Step 2.2.7.3.2
Divide by .
Step 2.2.7.3.3
Add and .
Step 2.2.7.3.4
Multiply by .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4