Enter a problem...
Precalculus Examples
Step 1
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 2
Add to both sides of the equation.
Step 3
Subtract from both sides of the equation.
Step 4
Step 4.1
Divide each term in by .
Step 4.2
Simplify the left side.
Step 4.2.1
Dividing two negative values results in a positive value.
Step 4.2.2
Divide by .
Step 4.3
Simplify the right side.
Step 4.3.1
Divide by .
Step 5
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 6
Consolidate the solutions.
Step 7
Step 7.1
Set the denominator in equal to to find where the expression is undefined.
Step 7.2
Solve for .
Step 7.2.1
Subtract from both sides of the equation.
Step 7.2.2
Divide each term in by and simplify.
Step 7.2.2.1
Divide each term in by .
Step 7.2.2.2
Simplify the left side.
Step 7.2.2.2.1
Dividing two negative values results in a positive value.
Step 7.2.2.2.2
Divide by .
Step 7.2.2.3
Simplify the right side.
Step 7.2.2.3.1
Divide by .
Step 7.3
The domain is all values of that make the expression defined.
Step 8
Use each root to create test intervals.
Step 9
Step 9.1
Test a value on the interval to see if it makes the inequality true.
Step 9.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.1.2
Replace with in the original inequality.
Step 9.1.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 9.2
Test a value on the interval to see if it makes the inequality true.
Step 9.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.2.2
Replace with in the original inequality.
Step 9.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 9.3
Test a value on the interval to see if it makes the inequality true.
Step 9.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.3.2
Replace with in the original inequality.
Step 9.3.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 9.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 10
The solution consists of all of the true intervals.
Step 11
Convert the inequality to interval notation.
Step 12