Precalculus Examples

Convert to Interval Notation x^4(1-3x)(5x+2)^3>0
Step 1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2
Set equal to and solve for .
Tap for more steps...
Step 2.1
Set equal to .
Step 2.2
Solve for .
Tap for more steps...
Step 2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.2.2
Simplify .
Tap for more steps...
Step 2.2.2.1
Rewrite as .
Step 2.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.2.2.3
Plus or minus is .
Step 3
Set equal to and solve for .
Tap for more steps...
Step 3.1
Set equal to .
Step 3.2
Solve for .
Tap for more steps...
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.2.1
Divide each term in by .
Step 3.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.2.1.1
Cancel the common factor.
Step 3.2.2.2.1.2
Divide by .
Step 3.2.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.2.3.1
Dividing two negative values results in a positive value.
Step 4
Set equal to and solve for .
Tap for more steps...
Step 4.1
Set equal to .
Step 4.2
Solve for .
Tap for more steps...
Step 4.2.1
Set the equal to .
Step 4.2.2
Solve for .
Tap for more steps...
Step 4.2.2.1
Subtract from both sides of the equation.
Step 4.2.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 4.2.2.2.1
Divide each term in by .
Step 4.2.2.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.2.2.1.1
Cancel the common factor.
Step 4.2.2.2.2.1.2
Divide by .
Step 4.2.2.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.2.2.3.1
Move the negative in front of the fraction.
Step 5
The final solution is all the values that make true.
Step 6
Use each root to create test intervals.
Step 7
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 7.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.1.2
Replace with in the original inequality.
Step 7.1.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 7.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.2.2
Replace with in the original inequality.
Step 7.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 7.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.3.2
Replace with in the original inequality.
Step 7.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 7.4
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.4.2
Replace with in the original inequality.
Step 7.4.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 7.5
Compare the intervals to determine which ones satisfy the original inequality.
False
True
True
False
False
True
True
False
Step 8
The solution consists of all of the true intervals.
or
Step 9
Convert the inequality to interval notation.
Step 10