Precalculus Examples

Find the Inverse f(x)=(x^2-6)/(7x^2)
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.2.2
The LCM of one and any expression is the expression.
Step 3.3
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 3.3.1
Multiply each term in by .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Rewrite using the commutative property of multiplication.
Step 3.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.2.1
Factor out of .
Step 3.3.2.2.2
Cancel the common factor.
Step 3.3.2.2.3
Rewrite the expression.
Step 3.3.2.3
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.3.1
Cancel the common factor.
Step 3.3.2.3.2
Rewrite the expression.
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Rewrite using the commutative property of multiplication.
Step 3.4
Solve the equation.
Tap for more steps...
Step 3.4.1
Subtract from both sides of the equation.
Step 3.4.2
Add to both sides of the equation.
Step 3.4.3
Factor out of .
Tap for more steps...
Step 3.4.3.1
Multiply by .
Step 3.4.3.2
Factor out of .
Step 3.4.3.3
Factor out of .
Step 3.4.4
Divide each term in by and simplify.
Tap for more steps...
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4.6
Simplify .
Tap for more steps...
Step 3.4.6.1
Rewrite as .
Step 3.4.6.2
Multiply by .
Step 3.4.6.3
Combine and simplify the denominator.
Tap for more steps...
Step 3.4.6.3.1
Multiply by .
Step 3.4.6.3.2
Raise to the power of .
Step 3.4.6.3.3
Raise to the power of .
Step 3.4.6.3.4
Use the power rule to combine exponents.
Step 3.4.6.3.5
Add and .
Step 3.4.6.3.6
Rewrite as .
Tap for more steps...
Step 3.4.6.3.6.1
Use to rewrite as .
Step 3.4.6.3.6.2
Apply the power rule and multiply exponents, .
Step 3.4.6.3.6.3
Combine and .
Step 3.4.6.3.6.4
Cancel the common factor of .
Tap for more steps...
Step 3.4.6.3.6.4.1
Cancel the common factor.
Step 3.4.6.3.6.4.2
Rewrite the expression.
Step 3.4.6.3.6.5
Simplify.
Step 3.4.6.4
Combine using the product rule for radicals.
Step 3.4.7
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.4.7.1
First, use the positive value of the to find the first solution.
Step 3.4.7.2
Next, use the negative value of the to find the second solution.
Step 3.4.7.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 5.2
Find the range of .
Tap for more steps...
Step 5.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 5.3
Find the domain of .
Tap for more steps...
Step 5.3.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 5.3.2
Solve for .
Tap for more steps...
Step 5.3.2.1
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.2.1.1
Divide each term in by .
Step 5.3.2.1.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.2.1.1
Cancel the common factor.
Step 5.3.2.1.2.1.2
Divide by .
Step 5.3.2.1.3
Simplify the right side.
Tap for more steps...
Step 5.3.2.1.3.1
Divide by .
Step 5.3.2.2
Subtract from both sides of the inequality.
Step 5.3.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 5.3.2.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.3.2.1.1
Cancel the common factor.
Step 5.3.2.3.2.1.2
Divide by .
Step 5.3.2.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.2.3.3.1
Dividing two negative values results in a positive value.
Step 5.3.3
Set the denominator in equal to to find where the expression is undefined.
Step 5.3.4
Solve for .
Tap for more steps...
Step 5.3.4.1
Subtract from both sides of the equation.
Step 5.3.4.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.4.2.1
Divide each term in by .
Step 5.3.4.2.2
Simplify the left side.
Tap for more steps...
Step 5.3.4.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.4.2.2.1.1
Cancel the common factor.
Step 5.3.4.2.2.1.2
Divide by .
Step 5.3.4.2.3
Simplify the right side.
Tap for more steps...
Step 5.3.4.2.3.1
Dividing two negative values results in a positive value.
Step 5.3.5
The domain is all values of that make the expression defined.
Step 5.4
Find the domain of .
Tap for more steps...
Step 5.4.1
Set the denominator in equal to to find where the expression is undefined.
Step 5.4.2
Solve for .
Tap for more steps...
Step 5.4.2.1
Divide each term in by and simplify.
Tap for more steps...
Step 5.4.2.1.1
Divide each term in by .
Step 5.4.2.1.2
Simplify the left side.
Tap for more steps...
Step 5.4.2.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.4.2.1.2.1.1
Cancel the common factor.
Step 5.4.2.1.2.1.2
Divide by .
Step 5.4.2.1.3
Simplify the right side.
Tap for more steps...
Step 5.4.2.1.3.1
Divide by .
Step 5.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.4.2.3
Simplify .
Tap for more steps...
Step 5.4.2.3.1
Rewrite as .
Step 5.4.2.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 5.4.2.3.3
Plus or minus is .
Step 5.4.3
The domain is all values of that make the expression defined.
Step 5.5
Since the domain of is the range of and the range of is the domain of , then is the inverse of .
Step 6