Precalculus Examples

Factor 5(x^6+1)^4(6x^5)(3x+2)^3+3(3x+2)^2(3)(x^6+1)^5
5(x6+1)4(6x5)(3x+2)3+3(3x+2)2(3)(x6+1)55(x6+1)4(6x5)(3x+2)3+3(3x+2)2(3)(x6+1)5
Step 1
Multiply 3(3x+2)23(3x+2)2 by 33.
5(x6+1)4(6x5)(3x+2)3+3(3x+2)23(x6+1)55(x6+1)4(6x5)(3x+2)3+3(3x+2)23(x6+1)5
Step 2
Factor (x6+1)43(3x+2)2(x6+1)43(3x+2)2 out of 5(x6+1)4(6x5)(3x+2)3+3(3x+2)23(x6+1)55(x6+1)4(6x5)(3x+2)3+3(3x+2)23(x6+1)5.
Tap for more steps...
Step 2.1
Factor (x6+1)43(3x+2)2(x6+1)43(3x+2)2 out of 5(x6+1)4(6x5)(3x+2)35(x6+1)4(6x5)(3x+2)3.
(x6+1)43(3x+2)2(5(2x5)(3x+2))+3(3x+2)23(x6+1)5(x6+1)43(3x+2)2(5(2x5)(3x+2))+3(3x+2)23(x6+1)5
Step 2.2
Factor (x6+1)43(3x+2)2 out of 3(3x+2)23(x6+1)5.
(x6+1)43(3x+2)2(5(2x5)(3x+2))+(x6+1)43(3x+2)2(3(x6+1))
Step 2.3
Factor (x6+1)43(3x+2)2 out of (x6+1)43(3x+2)2(5(2x5)(3x+2))+(x6+1)43(3x+2)2(3(x6+1)).
(x6+1)43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
(x6+1)43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 3
Rewrite x6 as (x2)3.
((x2)3+1)43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 4
Rewrite 1 as 13.
((x2)3+13)43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 5
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2) where a=x2 and b=1.
((x2+1)((x2)2-x21+12))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 6
Simplify.
Tap for more steps...
Step 6.1
Multiply the exponents in (x2)2.
Tap for more steps...
Step 6.1.1
Apply the power rule and multiply exponents, (am)n=amn.
((x2+1)(x22-x21+12))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 6.1.2
Multiply 2 by 2.
((x2+1)(x4-x21+12))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
((x2+1)(x4-x21+12))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 6.2
Multiply -1 by 1.
((x2+1)(x4-x2+12))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 6.3
One to any power is one.
((x2+1)(x4-x2+1))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
((x2+1)(x4-x2+1))43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 7
Apply the product rule to (x2+1)(x4-x2+1).
(x2+1)4(x4-x2+1)43(3x+2)2(5(2x5)(3x+2)+3(x6+1))
Step 8
Multiply 2 by 5.
(x2+1)4(x4-x2+1)43(3x+2)2(10x5(3x+2)+3(x6+1))
Step 9
Apply the distributive property.
(x2+1)4(x4-x2+1)43(3x+2)2(10x5(3x)+10x52+3(x6+1))
Step 10
Rewrite using the commutative property of multiplication.
(x2+1)4(x4-x2+1)43(3x+2)2(103x5x+10x52+3(x6+1))
Step 11
Multiply 2 by 10.
(x2+1)4(x4-x2+1)43(3x+2)2(103x5x+20x5+3(x6+1))
Step 12
Simplify each term.
Tap for more steps...
Step 12.1
Multiply x5 by x by adding the exponents.
Tap for more steps...
Step 12.1.1
Move x.
(x2+1)4(x4-x2+1)43(3x+2)2(103(xx5)+20x5+3(x6+1))
Step 12.1.2
Multiply x by x5.
Tap for more steps...
Step 12.1.2.1
Raise x to the power of 1.
(x2+1)4(x4-x2+1)43(3x+2)2(103(x1x5)+20x5+3(x6+1))
Step 12.1.2.2
Use the power rule aman=am+n to combine exponents.
(x2+1)4(x4-x2+1)43(3x+2)2(103x1+5+20x5+3(x6+1))
(x2+1)4(x4-x2+1)43(3x+2)2(103x1+5+20x5+3(x6+1))
Step 12.1.3
Add 1 and 5.
(x2+1)4(x4-x2+1)43(3x+2)2(103x6+20x5+3(x6+1))
(x2+1)4(x4-x2+1)43(3x+2)2(103x6+20x5+3(x6+1))
Step 12.2
Multiply 10 by 3.
(x2+1)4(x4-x2+1)43(3x+2)2(30x6+20x5+3(x6+1))
(x2+1)4(x4-x2+1)43(3x+2)2(30x6+20x5+3(x6+1))
Step 13
Apply the distributive property.
(x2+1)4(x4-x2+1)43(3x+2)2(30x6+20x5+3x6+31)
Step 14
Multiply 3 by 1.
(x2+1)4(x4-x2+1)43(3x+2)2(30x6+20x5+3x6+3)
Step 15
Add 30x6 and 3x6.
(x2+1)4(x4-x2+1)43(3x+2)2(33x6+20x5+3)
 [x2  12  π  xdx ]