Precalculus Examples

Find the x and y Intercepts f(x)=5x^3-x^2+5x-1
Step 1
Find the x-intercepts.
Tap for more steps...
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Tap for more steps...
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Factor the left side of the equation.
Tap for more steps...
Step 1.2.2.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.2.2.1.1
Group the first two terms and the last two terms.
Step 1.2.2.1.2
Factor out the greatest common factor (GCF) from each group.
Step 1.2.2.2
Factor the polynomial by factoring out the greatest common factor, .
Step 1.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.4
Set equal to and solve for .
Tap for more steps...
Step 1.2.4.1
Set equal to .
Step 1.2.4.2
Solve for .
Tap for more steps...
Step 1.2.4.2.1
Add to both sides of the equation.
Step 1.2.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.4.2.2.1
Divide each term in by .
Step 1.2.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.4.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.2.2.1.1
Cancel the common factor.
Step 1.2.4.2.2.2.1.2
Divide by .
Step 1.2.5
Set equal to and solve for .
Tap for more steps...
Step 1.2.5.1
Set equal to .
Step 1.2.5.2
Solve for .
Tap for more steps...
Step 1.2.5.2.1
Subtract from both sides of the equation.
Step 1.2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.2.5.2.3
Rewrite as .
Step 1.2.5.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.5.2.4.1
First, use the positive value of the to find the first solution.
Step 1.2.5.2.4.2
Next, use the negative value of the to find the second solution.
Step 1.2.5.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.6
The final solution is all the values that make true.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Find the y-intercepts.
Tap for more steps...
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Tap for more steps...
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Remove parentheses.
Step 2.2.4
Simplify .
Tap for more steps...
Step 2.2.4.1
Simplify each term.
Tap for more steps...
Step 2.2.4.1.1
Raising to any positive power yields .
Step 2.2.4.1.2
Multiply by .
Step 2.2.4.1.3
Raising to any positive power yields .
Step 2.2.4.1.4
Multiply by .
Step 2.2.4.1.5
Multiply by .
Step 2.2.4.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.2.4.2.1
Add and .
Step 2.2.4.2.2
Add and .
Step 2.2.4.2.3
Subtract from .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4