Enter a problem...
Precalculus Examples
Step 1
Set the denominator in equal to to find where the expression is undefined.
Step 2
Step 2.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 2.2
Simplify each side of the equation.
Step 2.2.1
Use to rewrite as .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Simplify .
Step 2.2.2.1.1
Multiply the exponents in .
Step 2.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.2.1.1.2
Cancel the common factor of .
Step 2.2.2.1.1.2.1
Cancel the common factor.
Step 2.2.2.1.1.2.2
Rewrite the expression.
Step 2.2.2.1.2
Simplify.
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Raising to any positive power yields .
Step 2.3
Solve for .
Step 2.3.1
Subtract from both sides of the equation.
Step 2.3.2
Add to both sides of the equation.
Step 2.3.3
Factor the left side of the equation.
Step 2.3.3.1
Rewrite as .
Step 2.3.3.2
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 2.3.3.3
Simplify.
Step 2.3.3.3.1
Multiply by .
Step 2.3.3.3.2
Raise to the power of .
Step 2.3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3.5
Set equal to and solve for .
Step 2.3.5.1
Set equal to .
Step 2.3.5.2
Subtract from both sides of the equation.
Step 2.3.6
Set equal to and solve for .
Step 2.3.6.1
Set equal to .
Step 2.3.6.2
Solve for .
Step 2.3.6.2.1
Use the quadratic formula to find the solutions.
Step 2.3.6.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.3.6.2.3
Simplify.
Step 2.3.6.2.3.1
Simplify the numerator.
Step 2.3.6.2.3.1.1
Raise to the power of .
Step 2.3.6.2.3.1.2
Multiply .
Step 2.3.6.2.3.1.2.1
Multiply by .
Step 2.3.6.2.3.1.2.2
Multiply by .
Step 2.3.6.2.3.1.3
Subtract from .
Step 2.3.6.2.3.1.4
Rewrite as .
Step 2.3.6.2.3.1.5
Rewrite as .
Step 2.3.6.2.3.1.6
Rewrite as .
Step 2.3.6.2.3.1.7
Rewrite as .
Step 2.3.6.2.3.1.7.1
Factor out of .
Step 2.3.6.2.3.1.7.2
Rewrite as .
Step 2.3.6.2.3.1.8
Pull terms out from under the radical.
Step 2.3.6.2.3.1.9
Move to the left of .
Step 2.3.6.2.3.2
Multiply by .
Step 2.3.6.2.3.3
Simplify .
Step 2.3.6.2.4
Simplify the expression to solve for the portion of the .
Step 2.3.6.2.4.1
Simplify the numerator.
Step 2.3.6.2.4.1.1
Raise to the power of .
Step 2.3.6.2.4.1.2
Multiply .
Step 2.3.6.2.4.1.2.1
Multiply by .
Step 2.3.6.2.4.1.2.2
Multiply by .
Step 2.3.6.2.4.1.3
Subtract from .
Step 2.3.6.2.4.1.4
Rewrite as .
Step 2.3.6.2.4.1.5
Rewrite as .
Step 2.3.6.2.4.1.6
Rewrite as .
Step 2.3.6.2.4.1.7
Rewrite as .
Step 2.3.6.2.4.1.7.1
Factor out of .
Step 2.3.6.2.4.1.7.2
Rewrite as .
Step 2.3.6.2.4.1.8
Pull terms out from under the radical.
Step 2.3.6.2.4.1.9
Move to the left of .
Step 2.3.6.2.4.2
Multiply by .
Step 2.3.6.2.4.3
Simplify .
Step 2.3.6.2.4.4
Change the to .
Step 2.3.6.2.5
Simplify the expression to solve for the portion of the .
Step 2.3.6.2.5.1
Simplify the numerator.
Step 2.3.6.2.5.1.1
Raise to the power of .
Step 2.3.6.2.5.1.2
Multiply .
Step 2.3.6.2.5.1.2.1
Multiply by .
Step 2.3.6.2.5.1.2.2
Multiply by .
Step 2.3.6.2.5.1.3
Subtract from .
Step 2.3.6.2.5.1.4
Rewrite as .
Step 2.3.6.2.5.1.5
Rewrite as .
Step 2.3.6.2.5.1.6
Rewrite as .
Step 2.3.6.2.5.1.7
Rewrite as .
Step 2.3.6.2.5.1.7.1
Factor out of .
Step 2.3.6.2.5.1.7.2
Rewrite as .
Step 2.3.6.2.5.1.8
Pull terms out from under the radical.
Step 2.3.6.2.5.1.9
Move to the left of .
Step 2.3.6.2.5.2
Multiply by .
Step 2.3.6.2.5.3
Simplify .
Step 2.3.6.2.5.4
Change the to .
Step 2.3.6.2.6
The final answer is the combination of both solutions.
Step 2.3.7
The final solution is all the values that make true.
Step 3
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 4
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Set-Builder Notation:
Step 5
Determine the domain and range.
Domain:
Range:
Step 6